Learning Solutions to the Schrödinger equation with Neural-Network Quantum States

Giuseppe Carleo

Computational Quantum Science Lab Institute of Physics. EPFL - Lausanne - Switzerland

Computational Quantum Science Lab.

The Quantum Many-Body Problem.

ENS - Data Science Colloquium

April 29, 2021

2

01.1 - Interacting Quantum Matter

E.g. Harnessing Entanglement in Quantum Computers, Quantum Simulators...

E.g. Interacting Particles in Chemistry, Material Science, Atomic Physics, Nuclear Physics...

01.2 - Refresher: Quantum States

The state of a quantum spin is a complex-valued vector

$$|\Psi\rangle = c_{\uparrow}|\uparrow\rangle + c_{\downarrow}|\downarrow\rangle$$

Probability of Observing a Given State

$$P(\uparrow) = |c_{\uparrow}|^2$$
$$P(\downarrow) = |c_{\downarrow}|^2$$

A quantum spin can be found in either up or down state with a given probability

O1.3 - The Many-Body Wave Function

 $|\Psi\rangle = c_{\uparrow\uparrow\dots\uparrow}|\uparrow\uparrow\dots\uparrow\rangle + c_{\downarrow\uparrow\dots\uparrow}|\downarrow\uparrow\dots\uparrow\rangle + \dots c_{\downarrow\downarrow\dots\downarrow}|\downarrow\downarrow\dots\downarrow\rangle$ The Wave Function is a Vector **Complex-Valued Coefficients** in a Huge (2^N)

The state of N quantum particles is a high-dimensional "monster"

"In general the many-electron wave-function for a system of many electrons is not a legitimate scientific concept" W. Kohn, Nobel Lecture

Space

O1.4 - Time-Independent Schrödinger Equation

Eigenvalue Problem for given Hamiltonian

"Row-Sparse" Matrix for Physical Interactions

6

O1.5 - Exact Solutions Limited to Small Systems

[2019]

Summit

54 Qubits

Variational Representations.

April 29, 2021

8

O2.1 - Corners of the Hilbert space

9

O2.2 - Variational Representations

 $|\Psi(W)\rangle = c_{\uparrow\uparrow\dots\uparrow}(W)|\uparrow\uparrow\dots\uparrow\rangle + c_{\downarrow\uparrow\dots\uparrow}(W)|\downarrow\uparrow\dots\uparrow\rangle + \dots c_{\downarrow\downarrow\dots\downarrow}(W)|\downarrow\downarrow\dots\downarrow\rangle$

 $\langle Z_1 Z_2 \dots Z_n | \Psi(W) \rangle = \Psi(Z_1, Z_2 \dots Z_N; W) = c_{Z_1, Z_2, \dots, Z_N}(W)$

O2.3 – Physics–Inspired Representations

BCS Wave Function

Jastrow States

11

O2.4 - General Purpose: Matrix Product States

$$\langle Z_1 Z_2 \dots Z_n | \Psi(W) \rangle = \operatorname{Tr} \left[M(Z_1; W) M(Z_2; W) \right] .$$

$$Matrices \qquad S. White \qquad S. White \qquad Phys. Rev. L.$$

Simple Algebra

Efficient Compression of Wave-Function "Polynomial" complexity

Many-Body State Specified by Small Set of Local Quantities

$\dots M(Z_n; W)$]

Lett. 69, 2863 (1992)

Low Entanglement

O2.5 - Tensor Networks Representations

MPS PEPS ••• MERA

. . .

13

Neural-Network Representations.

April 29, 2021

O3.1 - Neural Quantum States

Carleo, and Troyer Science 355, 602 (2017)

O3.2 - Representation and Entanglement Properties

$$\langle \mathbf{Z} | \Psi \rangle = \sum_{q=0}^{2n} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(Z_p) \right)$$

Universal Approximation Theorems

Kolmogorov and Arnold (1956)

Volume-Law States

Deng, Li, and Das Sarma PRX 7, 021021 (2017)

Cybenko (1989)

Levine, Sharir, Cohen, and Shashua PRL 122, 065301 (2019)

O3.3 - Neural-Tensor Contractions

Corollary 1 For any tensor network quantum state with a contraction scheme of run-time k, and at most b bits of precision in computations and parameters, there exists a neural network that approximate it with a maximal error of ϵ and of run-time (number of edges) $O\left(k + \ln^2\left(\frac{kb}{\epsilon}\right) + \ln\left(\frac{1}{\epsilon}\right)\sqrt{\frac{1}{\epsilon}}\right).$

O3.4 - Representability Diagram

Learning the Ground State.

April 29, 2021

O4.1 - Variational Formulation

$$E(\mathbf{W}) = \frac{\langle \Psi(\mathbf{W}) | \mathcal{H} | \Psi(\mathbf{W}) \rangle}{\langle \Psi(\mathbf{W}) | \Psi(\mathbf{W}) \rangle} \geq E$$

$$\mathbf{A}$$
Rayleigh
Quotient

Expectation Minimization

$$E(\mathbf{W}) = \frac{\sum_{Z} |\Psi(Z; W)|^2 E_{\text{loc}}(Z; T)|^2}{\sum_{Z} |\Psi(Z; W)|^2}$$

McMillan, Phys. Rev. 138, *A442 (1965)*

ENS - Data Science Colloquium

April 29, 2021

\mathcal{I}_0

xact Ground-State Energy

04.2 - Energy Gradients

 $\nabla_k E = 2\left(\langle \mathcal{O}_k^* E_{\text{loc}} \rangle - \langle \mathcal{O}_k^* \rangle \langle E_{\text{loc}} \rangle\right)$ $E_{\rm loc}(Z;W) = \sum_{Z'} \frac{\Psi(Z';W)}{\Psi(Z;W)} \langle Z|\mathcal{H}|Z'\rangle$ $\mathcal{O}_k(Z;W) = \frac{1}{\Psi(Z;W)} \frac{\partial \Psi(Z;W)}{\partial W_k}$

$$\langle F \rangle = \frac{\sum_{Z} |\Psi(Z;W)|^2 F(Z)}{\sum_{Z} |\Psi(Z;W)|^2}$$

04.3 - Natural Gradients

Sandro Sorella et al. Physical Review Letters 80, 4558 (1998)

$$\sum_{k'} S_{k,k'} \Delta p_{k'} = -G_k$$

$$S_{k,k'} = \langle \mathcal{O}_k^{\star} \mathcal{O}_{k'} \rangle - \langle \mathcal{O}_k^{\star} \rangle \langle \mathcal{O}_{k'} \rangle \quad \bullet$$

Quantum Geometric Tensor or Quantum **Fisher Information**

Shun-Ichi Amari Journal Neural Computation 10, 251 (1998)

04.4 - Variational Learning Algorithm

Sample $Z^{(1)} \dots Z^{(M)}$ from $P(Z;W) = \frac{|\Psi(Z;W)|^2}{\sum_{Z'} |\Psi(Z';W)|^2}$ 1.

> Estimate Expectation Values and Gradient $\langle F \rangle \simeq \frac{1}{M} \sum_{i}^{N} F(Z^{(i)})$ 2.

> > Estimate Quantum Fisher

4.

3.

Update Parameters

05.

Example Applications.

April 29, 2021

O5.1 – Frustrated Spins

J1-J2 Model

$$\hat{H} = J_1 \sum_{\langle ij \rangle} \hat{S}_i \cdot \hat{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \hat{S}_i \cdot \hat{S}_j$$

Phase Diagram

05.2 – Heisenberg Limit – Shallow Net

Early (2016) Results With Shallow (RBM) Network

Carleo, and Troyer Science 355, 602 (2017)

05.3 – Heisenberg Limit – Deeper Net

(Mildly) deep CNN further improves

Choo, Neupert, and Carleo Phys. Rev. B 100, 125124 (2019)

05.4 - Frustrated Case: Accuracy Diagram

O5.5 - Origin of the Challenge?

Frustrated Phases Have Large Sample Complexity

Westerhout, Astrakhantsev, Tikhonov, Katsnelson, Bagrov Nature Comm. 11, 1593 (2020)

05.6 – Continuous Improvements...

TABLE II. Comparison of ground-state energy for the 10×10 lattice at $J_2 = 0.5$ among different wave functions. The wave functions in bold font use neural networks. In Ref. [18], p-th order Lanczos steps are applied to the VMC wave function.

Energy per site	Wave function	Referen
-0.494757(12)	Neural quantum state	65
-0.49516(1)	CNN	60
-0.49521(1)	VMC(p=0)	18
-0.495530	DMRG	22
-0.49575(3)	RBM-fermionic w.f.	63
-0.497549(2)	VMC(p=2)	18
-0.497629(1)	RBM+PP	presen

Nomura, and Imada arXiv:2005.14142 (2020)

nce

nt study

O5.7 – Fermions: Back to the Spin Problem

Map Fermions to Spins

Choo, Mezzacapo, and Carleo Nature Comm. 11, 2368 (2020)

Jordan-Wigner Mapping

Pro: Simple Mapping

Con: N-Body, non-local Spin Operators

Con: More Involved Mapping

Pro: log(N)-Body, quasi-local **Spin Operators**

Bravyi-Kitaev Mapping

05.8 - Jordan-Wigner Mapping

 $H_q = \sum h_j \boldsymbol{\sigma}_j$ j=1

Spin Hamiltonian is a sum of product of Pauli matrices

05.9 – Bravyi–Kitaev Mapping

O5.10 – Dissociation Curves for C2 and N2

STO-3G Basis Set Single-Layer Network

05.11 - Different Mappings

Ansatz is almost insensitive to the locality of the mapping

Computationally Tractable States.

April 9, 2021

O6.1 – Definition and Properties

Definition 1 An n-qubit state $|\psi\rangle$ is called 'computationally tractable' (CT) if the following conditions hold:

- (a) it is possible to sample in poly(n) time with classical means from the probability distribution $Prob(x) = |\langle x|\psi\rangle|^2$ on the set of n-bit strings x, and
- upon input of any bit string x, the coefficient $\langle x|\psi\rangle$ can be computed in poly(n) time on a classical computer.

Theorem 3 Let $|\psi\rangle$ and $|\varphi\rangle$ be CT n-qubit states and let A be an efficiently computable sparse (not necessarily unitary) n-qubit operation with $||A|| \leq 1$. Then there exists an efficient classical algorithm to approximate $\langle \varphi | A | \psi \rangle$ with polynomial accuracy.

Corollary 1 Let $|\psi\rangle$ be an *n*-qubit CT state and let O be a d-local observable with $d = O(\log n)$ and $||O|| \leq 1$. Then there exists an efficient classical algorithm to estimate $\langle \psi | O | \psi \rangle$ with polynomial accuracy.

> Van Den Nest arXiv:0911.1624 (2009)

O6.2 - Examples

Matrix Product States Are Computationally Tractable

Jastrow, Backflow, PEPS etc states are not computationally tractable

Generic neural deep quantum states are not computationally Tractable

06.3 - Autoregressive Quantum States

Sharir, Levine, Wies, Carleo, and Phys. Rev. Lett. 124, 020503

These Are Computationally Tractable

(a) Exact Sampling

(b) Computing Normalized Amplitudes is Efficient

06.4 – Using Masked Deep Networks

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Salimans et al. arXiv:1701.05517 (2017)

Network

Masked Convolutions

PixelCNN

Van den Oord et al. arXiv:1606.05328 (2016)

Ramachandran et al. arXiv:1704.06001 (2017)

06.5 - Exact Sampling

06.6 – Removing the Sampling Bottleneck Pays Off

Sharir, Levine, Wies, Carleo, and Shashua Phys. Rev. Lett. 124, 020503 (2020)

21x21 Transverse-Field Ising in 2d

About 1 Million Parameters

06.7 - Accuracy on Spins Only: Heisenberg Model

Carleo, and Shashua Phys. Rev. Lett. 124, 020503 (2020)

Shallow Networks

~4x10^-5

10 by 10 cluster

Quantum Variational Representations.

April 29, 2021

07.1 - General Setup

 $\frac{L(\theta)}{\nabla_{\theta} L(\theta)}$

 $\theta^{(k+1)} = \theta^k - \eta \nabla_\theta L(\theta)$

Iterative **Minimization**

Stochastic **Estimate of Loss** Function and Gradients

07.2 – Quantum Natural Gradient

$$\theta^{(k+1)} = \theta^k - \eta g^{-1}(\theta^k) \nabla_{\theta} L(\theta)$$
 Neural C

Stokes, Izaac, Killoran, and Carleo Quantum 4, 269 (2020)

$$g_{ij}(\theta) = \operatorname{Re}\left[\left\langle \frac{\partial \Psi}{\partial \theta_i} \middle| \frac{\partial \Psi}{\partial \theta_j} \right\rangle - \right]$$

April 29, 2021

Shun-Ichi Amari Computation 10, 251 (1998)

$L(\phi_1,\phi_2)$

07.3 - Strong Interplay With Classical Methods

Problem	Classical Stochastic	Qua
Variational Minimization	Variational Monte Carlo [<i>McMillan</i> , 1965]	Vari Quantum [<i>Peruzzo e</i>
Variational Imaginary Time Evolution	Stochastic Reconfiguration [<i>Sorella</i> , 1998]	[McArdle d
Variational Real Time Evolution	Time-Dependent Variational Monte Carlo [<i>Carleo et al</i> , 2012]	T [Le Benjan
Machine Learning	Natural Gradient Descent [<i>Amari,</i> 1998]	Quantur Gradien [<i>Stokes e</i>

ntum

iational Eigensolver *et al*, 2014]

et al, 2019]

'DVA

ee and nin, 2017]

m Natural It Descent et al, 2020]

Outlook.

April 29, 2021

Classical Variational Simulation

Highly Entangled State

General Guiding Principle for Networks?

Quantum Variational Simulation

Potentially More Expressive

Noise

Shallow Circuits

ENS - Data Science Colloquium

April 29, 2021

Exact Sampling [Autoregressive]

Efficiently Enforce Symmetries

"Arbitrary" Unitaries

The NetKet Project

www.netket.org

NetKet: A Machine Learning Toolkit for Many-Body Quantum Systems

Giuseppe Carleo,¹ Kenny Choo,² Damian Hofmann,³ James E. T. Smith,⁴ Tom Westerhout,⁵ Fabien Alet,⁶ Emily J. Davis,⁷ Stavros Efthymiou,⁸ Ivan Glasser,⁸ Sheng-Hsuan Lin,⁹ Marta Mauri,^{1,10} Guglielmo Mazzola,¹¹ Christian B. Mendl,¹² Evert van Nieuwenburg,¹³ Ossian O'Reilly,¹⁴ Hugo Théveniaut,⁶ Giacomo Torlai,¹ and Alexander Wietek¹

¹Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA ²Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland ³Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany ⁴Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80302, USA ⁵Institute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The Netherlands ⁶Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France ⁷Department of Physics, Stanford University, Stanford, California 94305, USA ⁸ Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany ⁹Department of Physics, T42, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany ¹⁰Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy ¹¹Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland ¹² Technische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, Germany ¹³Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA ¹⁴Southern California Earthquake Center, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA 90089, USA

SoftwareX 10, 100311 (2019)

import netket as nk

1D Lattice

g = nk.graph.Hypercube(length=20, n_dim=1, pbc=True)

Hilbert space of spins on the graph hi = nk.hilbert.Spin(s=0.5, graph=g)

Ising spin hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)

RBM Spin Machine

ma = nk.machine.RbmSpin(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma)

Computational Quantum Science Lab.

Sharir, Shashua, and Carleo arXiv:2103.10293, 2021

Choo, Mezzacapo, and Carleo Nat. Comm. 11, 2368 (2020)

Choo, Mezzacapo, and Carleo Nat. Comm. 11, 2368 (2020)

Stokes, Moreno, Pnevmatikakis, and Carleo Phys. Rev. B 102, 205122 (2020)

Gacon, Zoufal, Carleo, and Woerner arXiv:2103.09232, (2021)

> FLATIRON INSTITUTE

ETHzürich