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01.

The Quantum  
Many-Body  
Problem.
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01.1 - Interacting Quantum Matter

E.g. 
Interacting Particles in 

Chemistry, Material 
Science, Atomic Physics, 

Nuclear Physics…

E.g. 
Harnessing 

Entanglement in 
Quantum Computers, 

Quantum Simulators…
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01.2 - Refresher: Quantum States

The state of a 
quantum spin is 

a complex-valued 
vector 

| i

| "i

| #i

| i = c"| "i+ c#| #i

Probability of Observing a Given State

A quantum spin can be found  
in either up or down state  

with a given probability

P (") = |c"|2

P (#) = |c#|2



ENS - Data Science Colloquium April 29, 2021 5

01.3 - The Many-Body Wave Function

The Wave Function is a Vector  
in a Huge (2^N)  

Space 

Complex-Valued Coefficients

The state of N 
quantum particles  

is a high-dimensional 
“monster”

“In general the many-electron 
wave-function for a system of many  

electrons is not a legitimate scientific concept” 

W. Kohn, Nobel Lecture

<latexit sha1_base64="HzvYyGeu91SjfBRAzqofc26v57s=">AAADAXicfVLLSgMxFM2M7/pqdeHCTbAIglBmiqgboejGZQWrQqeUTJrWYCYZkoylTOvGX3HjQhG3/oU7/8b0YbUz6oXAybnnnpvcxA8ZVdpxPix7anpmdm5+IbO4tLyyms2tXSgRSUwqWDAhr3ykCKOcVDTVjFyFkqDAZ+TSvznp5y9viVRU8HPdCUktQC1OmxQjbah6ztroemVFPYl4ixF4BHE99qIQSSna8Bs0hFbjbQ9205KEBn457g4cG6LN/y/om6ZVf5kO+YTzN/zyHjMJ9wk4IRy3qGfzTsEZBEwDdwTyYBTlevbduOAoIFxjhpSquk6oazGSmmJGehkvUiRE+Aa1SNVAjgKiavHgBXtw2zAN2BTSLK7hgP1ZEaNAqU7gG2WA9LVK5vrkb7lqpJuHtZjyMNKE42GjZsSgFrD/HWCDSoI16xiAsKTmrBBfI4mwNp8mY4bgJq+cBhfFgrtfKJ7t5UvHo3HMg02wBXaACw5ACZyCMqgAbN1ZD9aT9Wzf24/2i/06lNrWqGYdTIT99glv+fkj</latexit>

| i = c""..."| "" . . . "i+ c#"..."| #" . . . "i+ . . . c##...#| ## . . . #i
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01.4 - Time-Independent Schrödinger Equation

Eigenvalue Problem 
for given Hamiltonian 

<latexit sha1_base64="1UXhLmjDJomiYZhSBHY83xhpMMc=">AAACGHicbVDLSsNAFJ34rPEVdelmsAiualJE3QhFEbqsYB/QhDCZTtqhk0mYmQgl9jPc+CtuXCjitjv/xkmbhW09MHA4517unBMkjEpl2z/Gyura+sZmacvc3tnd27cODlsyTgUmTRyzWHQCJAmjnDQVVYx0EkFQFDDSDoZ3ud9+IkLSmD+qUUK8CPU5DSlGSku+dW66EVIDjFhWHz+7DUl97grE+4zAG3jvczgv+lbZrthTwGXiFKQMCjR8a+L2YpxGhCvMkJRdx06UlyGhKGZkbLqpJAnCQ9QnXU05ioj0smmwMTzVSg+GsdCPKzhV/25kKJJyFAV6Mk8hF71c/M/rpiq89jLKk1QRjmeHwpRBFcO8JdijgmDFRpogLKj+K8QDJBBWuktTl+AsRl4mrWrFuaxUHy7KtduijhI4BifgDDjgCtRAHTRAE2DwAt7AB/g0Xo1348v4no2uGMXOEZiDMfkFZ42gAw==</latexit>

H| ni = En| ni

EigenstatesHamiltonian

“Row-Sparse”  
Matrix for  
Physical  

Interactions 

<latexit sha1_base64="lGF/wYtM6UTDjcg78X96yvDUrnU="></latexit>
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01.5 - Exact Solutions Limited to Small Systems

Papyrus

10 Qubits

[3000 BCE]

[1455]

[1973]

[1993]

[2019]
Book

IBM  
3340

IBM  
3390

Summit

15 Qubits

23 Qubits

35 Qubits

54 Qubits

[2002]

Earth 
Simulator

46 Qubits

Time



ENS - Data Science Colloquium April 29, 2021 8

02.

Variational  
Representations.
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02.1 - Corners of the Hilbert space

Hilbert Space 

Physical  
States 

H | i = E | i

d

dt
⇢(t) = L⇢(t)

<latexit sha1_base64="XA4rHux/6cohGeZZ+PjfIISN7dg=">AAACFXicbVC7SgNBFJ31GeMramkzGoTYhF0VtBGCNhYWEcwDkhDuTm6SIbMPZu4KYUntJ/gVtlrZia21hf/ibgyiiac6nHMv957jhkoasu0Pa25+YXFpObOSXV1b39jMbW1XTRBpgRURqEDXXTCopI8VkqSwHmoEz1VYcweXqV+7Q21k4N/SMMSWBz1fdqUASqR2bq/Z1SDiziju0Ig3dT8o0CE/59c/vJ3L20V7DD5LnAnJswnK7dxnsxOIyEOfhAJjGo4dUisGTVIoHGWbkcEQxAB62EioDx6aVjyOMuIHkQEKeIiaS8XHIv7eiMEzZui5yaQH1DfTXir+5zUi6p61YumHEaEv0kMkFY4PGaFl0hHyjtRIBOnnyKXPBWggQi05CJGIUVJaNunDmU4/S6pHRee46Nyc5EsXk2YybJftswJz2CkrsStWZhUm2D17ZE/s2XqwXqxX6+17dM6a7OywP7DevwAH1J2e</latexit>

… 

d

dt
| (t)i = �iH | (t)i
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z
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02.2 - Variational Representations

<latexit sha1_base64="YOBCMkL9TDG+J85siDL6oKfqBr0=">AAACAXicbVBNS8NAEJ3Ur1q/ol4EL4tFqJeSiKjHohePFewHNKVstpt26WYTdjdCifXiX/HiQRGv/gtv/hs3bQ7a+mDg8d4MM/P8mDOlHefbKiwtr6yuFddLG5tb2zv27l5TRYkktEEiHsm2jxXlTNCGZprTdiwpDn1OW/7oOvNb91QqFok7PY5pN8QDwQJGsDZSzz548OqKVbwQ66EfpK3JiSexGHDas8tO1ZkCLRI3J2XIUe/ZX14/IklIhSYcK9VxnVh3Uyw1I5xOSl6iaIzJCA9ox1CBQ6q66fSDCTo2Sh8FkTQlNJqqvydSHCo1Dn3TmV2q5r1M/M/rJDq47KZMxImmgswWBQlHOkJZHKjPJCWajw3BRDJzKyJDLDHRJrSSCcGdf3mRNE+r7nnVvT0r167yOIpwCEdQARcuoAY3UIcGEHiEZ3iFN+vJerHerY9Za8HKZ/bhD6zPH3fzlug=</latexit>

| (W)i

<latexit sha1_base64="xxH6Gi5QP5ijZBzmBPz6j4MdtaI="></latexit>

| (W )i = c""..."(W )| "" . . . "i+ c#"..."(W )| #" . . . "i+ . . . c##...#(W )| ## . . . #i

<latexit sha1_base64="6qVjVWMOrKrJnWC2sBaCa29Ojc0="></latexit>

hZ1Z2 . . . Zn| (W )i =  (Z1, Z2 . . . ZN ;W ) = cZ1,Z2,...ZN (W )
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02.3 - Physics-Inspired Representations

Physical States

Laughlin  
States

BCS  Wave  
Function

Jastrow  
States

Bethe  
Ansatz

…
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02.4 - General Purpose: Matrix Product States

Matrices  
DxD   

<latexit sha1_base64="RhZeyW+dlVYjsEgXJA3uw5iHgmw="></latexit>

hZ1Z2 . . . Zn| (W )i = Tr [M(Z1;W )M(Z2;W ) . . .M(Zn;W )]

Efficient Compression  
of Wave-Function

“Polynomial”  
complexity 

Simple Algebra

Many-Body State 
Specified by Small Set 

of Local Quantities  

Low Entanglement

S. White 
Phys. Rev. Lett. 69, 2863 (1992) 
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02.5 - Tensor Networks Representations

Area Law  
States

MPS  
PEPS  
MERA 

…

Physical States
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03.

Neural-Network  
Representations.
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<latexit sha1_base64="tBSqedKcMJU+9Wb5A9OoDsn4hLc="></latexit>

hZ1Z2 . . . ZN | i = g(L) �W (L) . . . g(2) �W (2)g(1) �W (1)Z

Carleo, and Troyer  
Science 355, 602 (2017) 

<latexit sha1_base64="nzH0x0B4EzlbjvqW6DBbCX2BjXo=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIqMeiF48VbC02pWy2m3bpZhN2X4QS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnSKQw6LrfTmlldW19o7xZ2dre2d2r7h+0TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwjGN7n/8MS1EbG6x0nCexEdKhEKRtFKvh9RHAVh9jglpF+tuXV3BrJMvILUoECzX/3yBzFLI66QSWpM13MT7GVUo2CSTyt+anhC2ZgOeddSRSNuetks85ScWGVAwljbp5DM1N8bGY2MmUSBncwzmkUvF//zuimGV71MqCRFrtj8UJhKgjHJCyADoTlDObGEMi1sVsJGVFOGtqaKLcFb/PIyaZ/VvYu6d3dea1wXdZThCI7hFDy4hAbcQhNawCCBZ3iFNyd1Xpx352M+WnKKnUP4A+fzB4T4kVg=</latexit>

Z
<latexit sha1_base64="3JJS+Zue1JbZ144pw3lqBCRQA+k=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoioi6LblxWsA9sSplMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbRVWVtfWN4qbpa3tnd09u7zfUlEiCW2SiEey42NFORO0qZnmtBNLikOf07Y/vs789gOVikXiTk9i2gvxULCAEayN1LfLXkOxqhdiPfKD9H56gvp2xak5M6Bl4uakAjkaffvLG0QkCanQhGOluq4T616KpWaE02nJSxSNMRnjIe0aKnBIVS+dRZ+iY6MMUBBJ84RGM/X3RopDpSahbyazjGrRy8T/vG6ig8teykScaCrI/FCQcKQjlPWABkxSovnEEEwkM1kRGWGJiTZtlUwJ7uKXl0nrtOae19zbs0r9Kq+jCIdwBFVw4QLqcAMNaAKBR3iGV3iznqwX6936mI8WrHznAP7A+vwBanmTdA==</latexit>

 (Z)

03.1 - Neural Quantum States
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Deng, Li, and Das 
Sarma 

PRX 7, 021021 
(2017)

Levine, Sharir, Cohen, 
and Shashua  

PRL 122, 065301 
(2019)

Universal Approximation 
Theorems

Volume-Law States

6

KxK	Conv
PxP	Pooling

P
H(in)

H(in)

H(out)

H
(out)=H

(in)

P
<latexit sha1_base64="K4WEmk/G5i7UiAyVSIzHIenrJnU=">AAACFXicbZDLSsNAFIYnXmu9VV26CRahBSmJCLoRCm66rGAv0MQymU7aoZNJmDkRypCXcOOruHGhiFvBnW/jtM1CWw8M/Pz/OZw5X5BwpsBxvq2V1bX1jc3CVnF7Z3dvv3Rw2FZxKgltkZjHshtgRTkTtAUMOO0mkuIo4LQTjG+meeeBSsVicQeThPoRHgoWMoLBWP3SWeNeV+IUqpm+zjxFJEtAwYRT7YUSEz2NmahmmW5mWb9UdmrOrOxl4eaijPJq9ktf3iAmaUQFEI6V6rlOAr7GEhjhNCt6qaIJJmM8pD0jBY6o8vXsqsw+Nc7ADmNpngB75v6e0DhSahIFpjPCMFKL2dT8L+ulEF75mokkBSrIfFGYchtie4rIHjBJCfCJEdgAMX+1yQgbGmBAFg0Ed/HkZdE+r7lOzb29KNdrOY4COkYnqIJcdInqqIGaqIUIekTP6BW9WU/Wi/VufcxbV6x85gj9KevzB/l9n+M=</latexit><latexit sha1_base64="K4WEmk/G5i7UiAyVSIzHIenrJnU=">AAACFXicbZDLSsNAFIYnXmu9VV26CRahBSmJCLoRCm66rGAv0MQymU7aoZNJmDkRypCXcOOruHGhiFvBnW/jtM1CWw8M/Pz/OZw5X5BwpsBxvq2V1bX1jc3CVnF7Z3dvv3Rw2FZxKgltkZjHshtgRTkTtAUMOO0mkuIo4LQTjG+meeeBSsVicQeThPoRHgoWMoLBWP3SWeNeV+IUqpm+zjxFJEtAwYRT7YUSEz2NmahmmW5mWb9UdmrOrOxl4eaijPJq9ktf3iAmaUQFEI6V6rlOAr7GEhjhNCt6qaIJJmM8pD0jBY6o8vXsqsw+Nc7ADmNpngB75v6e0DhSahIFpjPCMFKL2dT8L+ulEF75mokkBSrIfFGYchtie4rIHjBJCfCJEdgAMX+1yQgbGmBAFg0Ed/HkZdE+r7lOzb29KNdrOY4COkYnqIJcdInqqIGaqIUIekTP6BW9WU/Wi/VufcxbV6x85gj9KevzB/l9n+M=</latexit><latexit sha1_base64="K4WEmk/G5i7UiAyVSIzHIenrJnU=">AAACFXicbZDLSsNAFIYnXmu9VV26CRahBSmJCLoRCm66rGAv0MQymU7aoZNJmDkRypCXcOOruHGhiFvBnW/jtM1CWw8M/Pz/OZw5X5BwpsBxvq2V1bX1jc3CVnF7Z3dvv3Rw2FZxKgltkZjHshtgRTkTtAUMOO0mkuIo4LQTjG+meeeBSsVicQeThPoRHgoWMoLBWP3SWeNeV+IUqpm+zjxFJEtAwYRT7YUSEz2NmahmmW5mWb9UdmrOrOxl4eaijPJq9ktf3iAmaUQFEI6V6rlOAr7GEhjhNCt6qaIJJmM8pD0jBY6o8vXsqsw+Nc7ADmNpngB75v6e0DhSahIFpjPCMFKL2dT8L+ulEF75mokkBSrIfFGYchtie4rIHjBJCfCJEdgAMX+1yQgbGmBAFg0Ed/HkZdE+r7lOzb29KNdrOY4COkYnqIJcdInqqIGaqIUIekTP6BW9WU/Wi/VufcxbV6x85gj9KevzB/l9n+M=</latexit><latexit sha1_base64="K4WEmk/G5i7UiAyVSIzHIenrJnU=">AAACFXicbZDLSsNAFIYnXmu9VV26CRahBSmJCLoRCm66rGAv0MQymU7aoZNJmDkRypCXcOOruHGhiFvBnW/jtM1CWw8M/Pz/OZw5X5BwpsBxvq2V1bX1jc3CVnF7Z3dvv3Rw2FZxKgltkZjHshtgRTkTtAUMOO0mkuIo4LQTjG+meeeBSsVicQeThPoRHgoWMoLBWP3SWeNeV+IUqpm+zjxFJEtAwYRT7YUSEz2NmahmmW5mWb9UdmrOrOxl4eaijPJq9ktf3iAmaUQFEI6V6rlOAr7GEhjhNCt6qaIJJmM8pD0jBY6o8vXsqsw+Nc7ADmNpngB75v6e0DhSahIFpjPCMFKL2dT8L+ulEF75mokkBSrIfFGYchtie4rIHjBJCfCJEdgAMX+1yQgbGmBAFg0Ed/HkZdE+r7lOzb29KNdrOY4COkYnqIJcdInqqIGaqIUIekTP6BW9WU/Wi/VufcxbV6x85gj9KevzB/l9n+M=</latexit>

P

g:Rrl⇥. . .⇥Rrl!Rrl
<latexit sha1_base64="3RwK/oABQG2++izOV9Zt3tMUlj0=">AAACQHicbVBLSwMxGMzWV62vVY9egkXwIGVXBMVTwYvHKvYB7VqyadqGZjdL8q1Qlv1pXvwJ3jx78aCIV09m2wW17UBgmJkv+TJ+JLgGx3mxCkvLK6trxfXSxubW9o69u9fQMlaU1akUUrV8opngIasDB8FakWIk8AVr+qOrzG8+MKW5DO9gHDEvIIOQ9zklYKSu3RwklynuBASGvp/cpveJ6ooUJx3gAdMZET0J+ldZFJXzN3TtslNxJsDzxM1JGeWode3nTk/SOGAhUEG0brtOBF5CFHAqWFrqxJpFhI7IgLUNDYlZxksmBaT4yCg93JfKnBDwRP07kZBA63Hgm2S2p571MnGR146hf+ElPIxiYCGdPtSPBQaJszZxjytGQYwNIVRxsyumQ6IIBdN5yZTgzn55njROK65TcW/OytWTvI4iOkCH6Bi56BxV0TWqoTqi6BG9onf0YT1Zb9an9TWNFqx8Zh/9g/X9A+m8suY=</latexit><latexit sha1_base64="3RwK/oABQG2++izOV9Zt3tMUlj0=">AAACQHicbVBLSwMxGMzWV62vVY9egkXwIGVXBMVTwYvHKvYB7VqyadqGZjdL8q1Qlv1pXvwJ3jx78aCIV09m2wW17UBgmJkv+TJ+JLgGx3mxCkvLK6trxfXSxubW9o69u9fQMlaU1akUUrV8opngIasDB8FakWIk8AVr+qOrzG8+MKW5DO9gHDEvIIOQ9zklYKSu3RwklynuBASGvp/cpveJ6ooUJx3gAdMZET0J+ldZFJXzN3TtslNxJsDzxM1JGeWode3nTk/SOGAhUEG0brtOBF5CFHAqWFrqxJpFhI7IgLUNDYlZxksmBaT4yCg93JfKnBDwRP07kZBA63Hgm2S2p571MnGR146hf+ElPIxiYCGdPtSPBQaJszZxjytGQYwNIVRxsyumQ6IIBdN5yZTgzn55njROK65TcW/OytWTvI4iOkCH6Bi56BxV0TWqoTqi6BG9onf0YT1Zb9an9TWNFqx8Zh/9g/X9A+m8suY=</latexit><latexit sha1_base64="3RwK/oABQG2++izOV9Zt3tMUlj0=">AAACQHicbVBLSwMxGMzWV62vVY9egkXwIGVXBMVTwYvHKvYB7VqyadqGZjdL8q1Qlv1pXvwJ3jx78aCIV09m2wW17UBgmJkv+TJ+JLgGx3mxCkvLK6trxfXSxubW9o69u9fQMlaU1akUUrV8opngIasDB8FakWIk8AVr+qOrzG8+MKW5DO9gHDEvIIOQ9zklYKSu3RwklynuBASGvp/cpveJ6ooUJx3gAdMZET0J+ldZFJXzN3TtslNxJsDzxM1JGeWode3nTk/SOGAhUEG0brtOBF5CFHAqWFrqxJpFhI7IgLUNDYlZxksmBaT4yCg93JfKnBDwRP07kZBA63Hgm2S2p571MnGR146hf+ElPIxiYCGdPtSPBQaJszZxjytGQYwNIVRxsyumQ6IIBdN5yZTgzn55njROK65TcW/OytWTvI4iOkCH6Bi56BxV0TWqoTqi6BG9onf0YT1Zb9an9TWNFqx8Zh/9g/X9A+m8suY=</latexit><latexit sha1_base64="3RwK/oABQG2++izOV9Zt3tMUlj0=">AAACQHicbVBLSwMxGMzWV62vVY9egkXwIGVXBMVTwYvHKvYB7VqyadqGZjdL8q1Qlv1pXvwJ3jx78aCIV09m2wW17UBgmJkv+TJ+JLgGx3mxCkvLK6trxfXSxubW9o69u9fQMlaU1akUUrV8opngIasDB8FakWIk8AVr+qOrzG8+MKW5DO9gHDEvIIOQ9zklYKSu3RwklynuBASGvp/cpveJ6ooUJx3gAdMZET0J+ldZFJXzN3TtslNxJsDzxM1JGeWode3nTk/SOGAhUEG0brtOBF5CFHAqWFrqxJpFhI7IgLUNDYlZxksmBaT4yCg93JfKnBDwRP07kZBA63Hgm2S2p571MnGR146hf+ElPIxiYCGdPtSPBQaJszZxjytGQYwNIVRxsyumQ6IIBdN5yZTgzn55njROK65TcW/OytWTvI4iOkCH6Bi56BxV0TWqoTqi6BG9onf0YT1Zb9an9TWNFqx8Zh/9g/X9A+m8suY=</latexit>

ConvNet

ConvAC

yi⌘max
nX

j
x(j)
i , 0

o

<latexit sha1_base64="BIRE53qXjQafmDdf+/vXI2+45Q8="></latexit><latexit sha1_base64="BIRE53qXjQafmDdf+/vXI2+45Q8="></latexit><latexit sha1_base64="BIRE53qXjQafmDdf+/vXI2+45Q8="></latexit><latexit sha1_base64="BIRE53qXjQafmDdf+/vXI2+45Q8="></latexit>

yi⌘
Y

j
x(j)
i

<latexit sha1_base64="8tGWXTEsFScZEgIAvXQ3NLsRfU0=">AAACD3icbVBNSwMxEM3Wr1q/qh69BItYQcquCOqt4MVjBdcWunXJZtM2bTZZk2yxLP0JXvwrXjyoePXqzX9j2u5BWx8MPN6bYWZeEDOqtG1/W7mFxaXllfxqYW19Y3OruL1zq0QiMXGxYEI2AqQIo5y4mmpGGrEkKAoYqQf9y7FfHxCpqOA3ehiTVoQ6nLYpRtpIfvFw6FOYeuQ+oYMR9GIpQo8LRiOqld+DDz69S8u9o5FfLNkVewI4T5yMlECGml/88kKBk4hwjRlSqunYsW6lSGqKGRkVvESRGOE+6pCmoRxFRLXSyUMjeGCUELaFNMU1nKi/J1IUKTWMAtMZId1Vs95Y/M9rJrp93kopjxNNOJ4uaicMagHH6cCQSoI1GxqCsKTmVoi7SCKsTYYFE4Iz+/I8cU8qFxXn+rRUPc7SyIM9sA/KwAFnoAquQA24AINH8AxewZv1ZL1Y79bHtDVnZTO74A+szx+EJZ0E</latexit><latexit sha1_base64="8tGWXTEsFScZEgIAvXQ3NLsRfU0=">AAACD3icbVBNSwMxEM3Wr1q/qh69BItYQcquCOqt4MVjBdcWunXJZtM2bTZZk2yxLP0JXvwrXjyoePXqzX9j2u5BWx8MPN6bYWZeEDOqtG1/W7mFxaXllfxqYW19Y3OruL1zq0QiMXGxYEI2AqQIo5y4mmpGGrEkKAoYqQf9y7FfHxCpqOA3ehiTVoQ6nLYpRtpIfvFw6FOYeuQ+oYMR9GIpQo8LRiOqld+DDz69S8u9o5FfLNkVewI4T5yMlECGml/88kKBk4hwjRlSqunYsW6lSGqKGRkVvESRGOE+6pCmoRxFRLXSyUMjeGCUELaFNMU1nKi/J1IUKTWMAtMZId1Vs95Y/M9rJrp93kopjxNNOJ4uaicMagHH6cCQSoI1GxqCsKTmVoi7SCKsTYYFE4Iz+/I8cU8qFxXn+rRUPc7SyIM9sA/KwAFnoAquQA24AINH8AxewZv1ZL1Y79bHtDVnZTO74A+szx+EJZ0E</latexit><latexit sha1_base64="8tGWXTEsFScZEgIAvXQ3NLsRfU0=">AAACD3icbVBNSwMxEM3Wr1q/qh69BItYQcquCOqt4MVjBdcWunXJZtM2bTZZk2yxLP0JXvwrXjyoePXqzX9j2u5BWx8MPN6bYWZeEDOqtG1/W7mFxaXllfxqYW19Y3OruL1zq0QiMXGxYEI2AqQIo5y4mmpGGrEkKAoYqQf9y7FfHxCpqOA3ehiTVoQ6nLYpRtpIfvFw6FOYeuQ+oYMR9GIpQo8LRiOqld+DDz69S8u9o5FfLNkVewI4T5yMlECGml/88kKBk4hwjRlSqunYsW6lSGqKGRkVvESRGOE+6pCmoRxFRLXSyUMjeGCUELaFNMU1nKi/J1IUKTWMAtMZId1Vs95Y/M9rJrp93kopjxNNOJ4uaicMagHH6cCQSoI1GxqCsKTmVoi7SCKsTYYFE4Iz+/I8cU8qFxXn+rRUPc7SyIM9sA/KwAFnoAquQA24AINH8AxewZv1ZL1Y79bHtDVnZTO74A+szx+EJZ0E</latexit><latexit sha1_base64="8tGWXTEsFScZEgIAvXQ3NLsRfU0=">AAACD3icbVBNSwMxEM3Wr1q/qh69BItYQcquCOqt4MVjBdcWunXJZtM2bTZZk2yxLP0JXvwrXjyoePXqzX9j2u5BWx8MPN6bYWZeEDOqtG1/W7mFxaXllfxqYW19Y3OruL1zq0QiMXGxYEI2AqQIo5y4mmpGGrEkKAoYqQf9y7FfHxCpqOA3ehiTVoQ6nLYpRtpIfvFw6FOYeuQ+oYMR9GIpQo8LRiOqld+DDz69S8u9o5FfLNkVewI4T5yMlECGml/88kKBk4hwjRlSqunYsW6lSGqKGRkVvESRGOE+6pCmoRxFRLXSyUMjeGCUELaFNMU1nKi/J1IUKTWMAtMZId1Vs95Y/M9rJrp93kopjxNNOJ4uaicMagHH6cCQSoI1GxqCsKTmVoi7SCKsTYYFE4Iz+/I8cU8qFxXn+rRUPc7SyIM9sA/KwAFnoAquQA24AINH8AxewZv1ZL1Y79bHtDVnZTO74A+szx+EJZ0E</latexit>
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rl-1

PxP	Pooling

x(1)
<latexit sha1_base64="56s56lVgg545MY3eVvNO4xx9ymg=">AAAB+HicbVBNS8NAFHypX7V+RT16WVqEeimJCOqt4MVjBWMLbS2b7aZdutmE3U2xhPwTLx5UvPpTvPlv3LQ5aOvAwjDzHm92/JgzpR3n2yqtrW9sbpW3Kzu7e/sH9uHRg4oSSahHIh7Jjo8V5UxQTzPNaSeWFIc+p21/cpP77SmVikXiXs9i2g/xSLCAEayNNLDtXoj12A/Sp+wxrbtn2cCuOQ1nDrRK3ILUoEBrYH/1hhFJQio04VipruvEup9iqRnhNKv0EkVjTCZ4RLuGChxS1U/nyTN0apQhCiJpntBorv7eSHGo1Cz0zWSeUy17ufif1010cNVPmYgTTQVZHAoSjnSE8hrQkElKNJ8ZgolkJisiYywx0aasiinBXf7yKvHOG9cN9+6i1qwWbZThBKpQBxcuoQm30AIPCEzhGV7hzUqtF+vd+liMlqxi5xj+wPr8AZu+kxU=</latexit><latexit sha1_base64="56s56lVgg545MY3eVvNO4xx9ymg=">AAAB+HicbVBNS8NAFHypX7V+RT16WVqEeimJCOqt4MVjBWMLbS2b7aZdutmE3U2xhPwTLx5UvPpTvPlv3LQ5aOvAwjDzHm92/JgzpR3n2yqtrW9sbpW3Kzu7e/sH9uHRg4oSSahHIh7Jjo8V5UxQTzPNaSeWFIc+p21/cpP77SmVikXiXs9i2g/xSLCAEayNNLDtXoj12A/Sp+wxrbtn2cCuOQ1nDrRK3ILUoEBrYH/1hhFJQio04VipruvEup9iqRnhNKv0EkVjTCZ4RLuGChxS1U/nyTN0apQhCiJpntBorv7eSHGo1Cz0zWSeUy17ufif1010cNVPmYgTTQVZHAoSjnSE8hrQkElKNJ8ZgolkJisiYywx0aasiinBXf7yKvHOG9cN9+6i1qwWbZThBKpQBxcuoQm30AIPCEzhGV7hzUqtF+vd+liMlqxi5xj+wPr8AZu+kxU=</latexit><latexit sha1_base64="56s56lVgg545MY3eVvNO4xx9ymg=">AAAB+HicbVBNS8NAFHypX7V+RT16WVqEeimJCOqt4MVjBWMLbS2b7aZdutmE3U2xhPwTLx5UvPpTvPlv3LQ5aOvAwjDzHm92/JgzpR3n2yqtrW9sbpW3Kzu7e/sH9uHRg4oSSahHIh7Jjo8V5UxQTzPNaSeWFIc+p21/cpP77SmVikXiXs9i2g/xSLCAEayNNLDtXoj12A/Sp+wxrbtn2cCuOQ1nDrRK3ILUoEBrYH/1hhFJQio04VipruvEup9iqRnhNKv0EkVjTCZ4RLuGChxS1U/nyTN0apQhCiJpntBorv7eSHGo1Cz0zWSeUy17ufif1010cNVPmYgTTQVZHAoSjnSE8hrQkElKNJ8ZgolkJisiYywx0aasiinBXf7yKvHOG9cN9+6i1qwWbZThBKpQBxcuoQm30AIPCEzhGV7hzUqtF+vd+liMlqxi5xj+wPr8AZu+kxU=</latexit><latexit sha1_base64="56s56lVgg545MY3eVvNO4xx9ymg=">AAAB+HicbVBNS8NAFHypX7V+RT16WVqEeimJCOqt4MVjBWMLbS2b7aZdutmE3U2xhPwTLx5UvPpTvPlv3LQ5aOvAwjDzHm92/JgzpR3n2yqtrW9sbpW3Kzu7e/sH9uHRg4oSSahHIh7Jjo8V5UxQTzPNaSeWFIc+p21/cpP77SmVikXiXs9i2g/xSLCAEayNNLDtXoj12A/Sp+wxrbtn2cCuOQ1nDrRK3ILUoEBrYH/1hhFJQio04VipruvEup9iqRnhNKv0EkVjTCZ4RLuGChxS1U/nyTN0apQhCiJpntBorv7eSHGo1Cz0zWSeUy17ufif1010cNVPmYgTTQVZHAoSjnSE8hrQkElKNJ8ZgolkJisiYywx0aasiinBXf7yKvHOG9cN9+6i1qwWbZThBKpQBxcuoQm30AIPCEzhGV7hzUqtF+vd+liMlqxi5xj+wPr8AZu+kxU=</latexit>

K

K

x(1)
<latexit sha1_base64="5rdiKmfKZq83pjbIkeqQcBeRKv8=">AAACDHicbVDLSsNAFJ3UV62vqEs3warUTUlEUHcFNy4rGFtoYplMJ+3QyYOZGzGE/IAbf8WNCxW3foA7/8ZJm4W2HpjhcM693HuPF3MmwTS/tcrC4tLySnW1tra+sbmlb+/cyigRhNok4pHoelhSzkJqAwNOu7GgOPA47Xjjy8Lv3FMhWRTeQBpTN8DDkPmMYFBSXz9wAgwjz88e8rvMkUSwGMofUk6zhnWc5329bjbNCYx5YpWkjkq0+/qXM4hIEtAQCMdS9iwzBjfDAhjhNK85iaQxJmM8pD1FQxxQ6WaTa3LjUCkDw4+EeiEYE/V3R4YDKdPAU5XF7nLWK8T/vF4C/rmbsTBOgIZkOshPuAGRUURjDJigBHiqCFYRqF0NMsICE1AB1lQI1uzJ88Q+aV40revTeuuoTKOK9tA+aiALnaEWukJtZCOCHtEzekVv2pP2or1rH9PSilb27KI/0D5/AH6unJA=</latexit><latexit sha1_base64="5rdiKmfKZq83pjbIkeqQcBeRKv8=">AAACDHicbVDLSsNAFJ3UV62vqEs3warUTUlEUHcFNy4rGFtoYplMJ+3QyYOZGzGE/IAbf8WNCxW3foA7/8ZJm4W2HpjhcM693HuPF3MmwTS/tcrC4tLySnW1tra+sbmlb+/cyigRhNok4pHoelhSzkJqAwNOu7GgOPA47Xjjy8Lv3FMhWRTeQBpTN8DDkPmMYFBSXz9wAgwjz88e8rvMkUSwGMofUk6zhnWc5329bjbNCYx5YpWkjkq0+/qXM4hIEtAQCMdS9iwzBjfDAhjhNK85iaQxJmM8pD1FQxxQ6WaTa3LjUCkDw4+EeiEYE/V3R4YDKdPAU5XF7nLWK8T/vF4C/rmbsTBOgIZkOshPuAGRUURjDJigBHiqCFYRqF0NMsICE1AB1lQI1uzJ88Q+aV40revTeuuoTKOK9tA+aiALnaEWukJtZCOCHtEzekVv2pP2or1rH9PSilb27KI/0D5/AH6unJA=</latexit><latexit sha1_base64="5rdiKmfKZq83pjbIkeqQcBeRKv8=">AAACDHicbVDLSsNAFJ3UV62vqEs3warUTUlEUHcFNy4rGFtoYplMJ+3QyYOZGzGE/IAbf8WNCxW3foA7/8ZJm4W2HpjhcM693HuPF3MmwTS/tcrC4tLySnW1tra+sbmlb+/cyigRhNok4pHoelhSzkJqAwNOu7GgOPA47Xjjy8Lv3FMhWRTeQBpTN8DDkPmMYFBSXz9wAgwjz88e8rvMkUSwGMofUk6zhnWc5329bjbNCYx5YpWkjkq0+/qXM4hIEtAQCMdS9iwzBjfDAhjhNK85iaQxJmM8pD1FQxxQ6WaTa3LjUCkDw4+EeiEYE/V3R4YDKdPAU5XF7nLWK8T/vF4C/rmbsTBOgIZkOshPuAGRUURjDJigBHiqCFYRqF0NMsICE1AB1lQI1uzJ88Q+aV40revTeuuoTKOK9tA+aiALnaEWukJtZCOCHtEzekVv2pP2or1rH9PSilb27KI/0D5/AH6unJA=</latexit><latexit sha1_base64="5rdiKmfKZq83pjbIkeqQcBeRKv8=">AAACDHicbVDLSsNAFJ3UV62vqEs3warUTUlEUHcFNy4rGFtoYplMJ+3QyYOZGzGE/IAbf8WNCxW3foA7/8ZJm4W2HpjhcM693HuPF3MmwTS/tcrC4tLySnW1tra+sbmlb+/cyigRhNok4pHoelhSzkJqAwNOu7GgOPA47Xjjy8Lv3FMhWRTeQBpTN8DDkPmMYFBSXz9wAgwjz88e8rvMkUSwGMofUk6zhnWc5329bjbNCYx5YpWkjkq0+/qXM4hIEtAQCMdS9iwzBjfDAhjhNK85iaQxJmM8pD1FQxxQ6WaTa3LjUCkDw4+EeiEYE/V3R4YDKdPAU5XF7nLWK8T/vF4C/rmbsTBOgIZkOshPuAGRUURjDJigBHiqCFYRqF0NMsICE1AB1lQI1uzJ88Q+aV40revTeuuoTKOK9tA+aiALnaEWukJtZCOCHtEzekVv2pP2or1rH9PSilb27KI/0D5/AH6unJA=</latexit>

x(K2)

x(K)

y=W (L)x
<latexit sha1_base64="T5gE/gF4sMsgkqYbsr9DFidikxs=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUE9CAUvHjxUMLbQxrLZbtqlm03Y3YghxIt/xYsHFa/+DG/+GzdtDtr6YODx3gwz87yIUaks69sozc0vLC6Vlysrq2vrG+bm1q0MY4GJg0MWiraHJGGUE0dRxUg7EgQFHiMtb3SR+617IiQN+Y1KIuIGaMCpTzFSWuqZOwlMzzPYuktrVwcZ7AZIDT0/fch6ZtWqW2PAWWIXpAoKNHvmV7cf4jggXGGGpOzYVqTcFAlFMSNZpRtLEiE8QgPS0ZSjgEg3HX+QwX2t9KEfCl1cwbH6eyJFgZRJ4OnO/EI57eXif14nVv6pm1IexYpwPFnkxwyqEOZxwD4VBCuWaIKwoPpWiIdIIKx0aBUdgj398ixxjupndfv6uNo4LNIog12wB2rABiegAS5BEzgAg0fwDF7Bm/FkvBjvxsektWQUM9vgD4zPH7r+le8=</latexit><latexit sha1_base64="T5gE/gF4sMsgkqYbsr9DFidikxs=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUE9CAUvHjxUMLbQxrLZbtqlm03Y3YghxIt/xYsHFa/+DG/+GzdtDtr6YODx3gwz87yIUaks69sozc0vLC6Vlysrq2vrG+bm1q0MY4GJg0MWiraHJGGUE0dRxUg7EgQFHiMtb3SR+617IiQN+Y1KIuIGaMCpTzFSWuqZOwlMzzPYuktrVwcZ7AZIDT0/fch6ZtWqW2PAWWIXpAoKNHvmV7cf4jggXGGGpOzYVqTcFAlFMSNZpRtLEiE8QgPS0ZSjgEg3HX+QwX2t9KEfCl1cwbH6eyJFgZRJ4OnO/EI57eXif14nVv6pm1IexYpwPFnkxwyqEOZxwD4VBCuWaIKwoPpWiIdIIKx0aBUdgj398ixxjupndfv6uNo4LNIog12wB2rABiegAS5BEzgAg0fwDF7Bm/FkvBjvxsektWQUM9vgD4zPH7r+le8=</latexit><latexit sha1_base64="T5gE/gF4sMsgkqYbsr9DFidikxs=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUE9CAUvHjxUMLbQxrLZbtqlm03Y3YghxIt/xYsHFa/+DG/+GzdtDtr6YODx3gwz87yIUaks69sozc0vLC6Vlysrq2vrG+bm1q0MY4GJg0MWiraHJGGUE0dRxUg7EgQFHiMtb3SR+617IiQN+Y1KIuIGaMCpTzFSWuqZOwlMzzPYuktrVwcZ7AZIDT0/fch6ZtWqW2PAWWIXpAoKNHvmV7cf4jggXGGGpOzYVqTcFAlFMSNZpRtLEiE8QgPS0ZSjgEg3HX+QwX2t9KEfCl1cwbH6eyJFgZRJ4OnO/EI57eXif14nVv6pm1IexYpwPFnkxwyqEOZxwD4VBCuWaIKwoPpWiIdIIKx0aBUdgj398ixxjupndfv6uNo4LNIog12wB2rABiegAS5BEzgAg0fwDF7Bm/FkvBjvxsektWQUM9vgD4zPH7r+le8=</latexit><latexit sha1_base64="T5gE/gF4sMsgkqYbsr9DFidikxs=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUE9CAUvHjxUMLbQxrLZbtqlm03Y3YghxIt/xYsHFa/+DG/+GzdtDtr6YODx3gwz87yIUaks69sozc0vLC6Vlysrq2vrG+bm1q0MY4GJg0MWiraHJGGUE0dRxUg7EgQFHiMtb3SR+617IiQN+Y1KIuIGaMCpTzFSWuqZOwlMzzPYuktrVwcZ7AZIDT0/fch6ZtWqW2PAWWIXpAoKNHvmV7cf4jggXGGGpOzYVqTcFAlFMSNZpRtLEiE8QgPS0ZSjgEg3HX+QwX2t9KEfCl1cwbH6eyJFgZRJ4OnO/EI57eXif14nVv6pm1IexYpwPFnkxwyqEOZxwD4VBCuWaIKwoPpWiIdIIKx0aBUdgj398ixxjupndfv6uNo4LNIog12wB2rABiegAS5BEzgAg0fwDF7Bm/FkvBjvxsektWQUM9vgD4zPH7r+le8=</latexit>

rL-1

Global	
Pooling

x(P2)
<latexit sha1_base64="mokmnQ9YqCP/ICJeXxTZpbER5IQ=">AAACFXicbVDLSsNAFJ3UV62vqEs3aYtQQUpSBF0W3LisYB/QpGUynbRDJw9mbsQS8hNu/BU3LhRxK7jzb5y0WWjrgRkO59zLzDluxJkE0/zWCmvrG5tbxe3Szu7e/oF+eNSRYSwIbZOQh6LnYkk5C2gbGHDaiwTFvstp151eZ373ngrJwuAOZhF1fDwOmMcIBiUN9XPbxzBxveQhHSQ1u5zYkggWQX7DjNOkNWikqV0+S4d61aybcxirxMpJFeVoDfUvexSS2KcBEI6l7FtmBE6CBTDCaVqyY0kjTKZ4TPuKBtin0knmqVLjVCkjwwuFOgEYc/X3RoJ9KWe+qyazDHLZy8T/vH4M3pWTsCCKgQZk8ZAXcwNCI6vIGDFBCfCZIljVoP5qkAkWmIAqsqRKsJYjr5JOo26Zdev2otqs5HUU0QmqoBqy0CVqohvUQm1E0CN6Rq/oTXvSXrR37WMxWtDynWP0B9rnD7jyn6k=</latexit><latexit sha1_base64="mokmnQ9YqCP/ICJeXxTZpbER5IQ=">AAACFXicbVDLSsNAFJ3UV62vqEs3aYtQQUpSBF0W3LisYB/QpGUynbRDJw9mbsQS8hNu/BU3LhRxK7jzb5y0WWjrgRkO59zLzDluxJkE0/zWCmvrG5tbxe3Szu7e/oF+eNSRYSwIbZOQh6LnYkk5C2gbGHDaiwTFvstp151eZ373ngrJwuAOZhF1fDwOmMcIBiUN9XPbxzBxveQhHSQ1u5zYkggWQX7DjNOkNWikqV0+S4d61aybcxirxMpJFeVoDfUvexSS2KcBEI6l7FtmBE6CBTDCaVqyY0kjTKZ4TPuKBtin0knmqVLjVCkjwwuFOgEYc/X3RoJ9KWe+qyazDHLZy8T/vH4M3pWTsCCKgQZk8ZAXcwNCI6vIGDFBCfCZIljVoP5qkAkWmIAqsqRKsJYjr5JOo26Zdev2otqs5HUU0QmqoBqy0CVqohvUQm1E0CN6Rq/oTXvSXrR37WMxWtDynWP0B9rnD7jyn6k=</latexit><latexit sha1_base64="mokmnQ9YqCP/ICJeXxTZpbER5IQ=">AAACFXicbVDLSsNAFJ3UV62vqEs3aYtQQUpSBF0W3LisYB/QpGUynbRDJw9mbsQS8hNu/BU3LhRxK7jzb5y0WWjrgRkO59zLzDluxJkE0/zWCmvrG5tbxe3Szu7e/oF+eNSRYSwIbZOQh6LnYkk5C2gbGHDaiwTFvstp151eZ373ngrJwuAOZhF1fDwOmMcIBiUN9XPbxzBxveQhHSQ1u5zYkggWQX7DjNOkNWikqV0+S4d61aybcxirxMpJFeVoDfUvexSS2KcBEI6l7FtmBE6CBTDCaVqyY0kjTKZ4TPuKBtin0knmqVLjVCkjwwuFOgEYc/X3RoJ9KWe+qyazDHLZy8T/vH4M3pWTsCCKgQZk8ZAXcwNCI6vIGDFBCfCZIljVoP5qkAkWmIAqsqRKsJYjr5JOo26Zdev2otqs5HUU0QmqoBqy0CVqohvUQm1E0CN6Rq/oTXvSXrR37WMxWtDynWP0B9rnD7jyn6k=</latexit><latexit sha1_base64="mokmnQ9YqCP/ICJeXxTZpbER5IQ=">AAACFXicbVDLSsNAFJ3UV62vqEs3aYtQQUpSBF0W3LisYB/QpGUynbRDJw9mbsQS8hNu/BU3LhRxK7jzb5y0WWjrgRkO59zLzDluxJkE0/zWCmvrG5tbxe3Szu7e/oF+eNSRYSwIbZOQh6LnYkk5C2gbGHDaiwTFvstp151eZ373ngrJwuAOZhF1fDwOmMcIBiUN9XPbxzBxveQhHSQ1u5zYkggWQX7DjNOkNWikqV0+S4d61aybcxirxMpJFeVoDfUvexSS2KcBEI6l7FtmBE6CBTDCaVqyY0kjTKZ4TPuKBtin0knmqVLjVCkjwwuFOgEYc/X3RoJ9KWe+qyazDHLZy8T/vH4M3pWTsCCKgQZk8ZAXcwNCI6vIGDFBCfCZIljVoP5qkAkWmIAqsqRKsJYjr5JOo26Zdev2otqs5HUU0QmqoBqy0CVqohvUQm1E0CN6Rq/oTXvSXrR37WMxWtDynWP0B9rnD7jyn6k=</latexit>x(···)
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FIG. 4. A general overlapping convolutional network in 2D.

window slices extending beyond the boundaries have zero

value. Let y 2 Rr
(out)

be a vector representing the chan-
nels at some location of the output, and similarly, let

x(1), . . . ,x(R2) 2 Rr
(in)

be the set of vectors representing
the slice, where each vector represents the channels at its
respective location inside the R ⇥ R window, then the
operation of a GC layer is defined as follows:

y = g(W (1)x(1), . . . ,W (R2)x(R2)),

where W (1), . . . ,W (R2) 2 Rr
(out)

⇥r
(in)

are referred to as

the weights of the layer, and g : Rr
(out) ⇥ · · ·⇥Rr

(out) !
Rr

(out)

is some point-wise pooling function. Additionally,
we call a GC layer that is limited to unit-stride and has
K⇥K receptive field a K⇥K Conv layer, and similarly,
a P⇥P Pooling layer is a GC layer with both stride and
receptive fields equal to P⇥P . With the above defini-
tions, a convolutional network is simply a sequence of L
blocks of Conv and Pooling layers that follows the repre-
sentation layer, and ends with a global pooling layer, i.e.
a pooling layer with P equals the entire spatial extent of
its input. The entire network is illustrated in Fig. 4.

Given a non-linear point-wise activation function
�(·) (e.g. ReLU), then setting all pooling functions
to average pooling followed by the activation, i.e.

g(x(1), . . . ,x(R2))c = �
⇣P

R
2

i=1 x
(i)
c

⌘
for c 2 [D(out)], give

rise to the common all-convolutional network with �(·)
activations, which served as the initial motivation for this
formulation. Alternatively, choosing instead a product

pooling function, i.e. g(x(1), . . . ,x(R2))c =
Q

R
2

i=1 x
(i)
c for

c 2 [D(out)], results in an Arithmetic Circuit, i.e. a circuit
containing just product and sum operations, hence it is
referred to as an Overlapping Convolutional Arithmetic
Circuit, or Overlapping ConvAC in short, where ‘over-
lapping’ refers to having receptive fields which overlap
when K > 1. The non-overlapping case, where K = 1, is
equivalent to ConvACs as originally introduced by Cohen
et al. [31].

In the body of the paper we have discussed the entan-
glement entropy of overlapping convolutional networks
with no spatial decimation, which essentially amount to
having pooling layers with P = 1, which was summarized
in Theorem 1 of the main text. The following theorem

quantifies the e↵ect of pooling layers with P = 2 in over-
lapping convolutional networks:

Theorem 3 For an overlapping ConvAC with 2d pool-
ing operations in between convolution layers (Fig. 4 with
P = 2), the maximal entanglement entropy w.r.t. (A,B)
modeled by the network obeys:

⌦
�
min

�
↵d,K↵d�1

 �
,

where ↵ is the linear dimension of the d-dimensional sys-
tem for d = 1, 2.

Thus, the introduction of such pooling layers results
in a diminished ability of the overlapping-convolutional
network to represent volume-law entanglement scaling,
since the KL factor from Theorem 1 of the main text is
diminished to a factor of K. In the following, we prove
the results in Theorem 1 of the main text and Theo-
rem 3 in this appendix regarding entanglement scaling
supported by overlapping ConvACs:
Proof (of Theorem 1 of the main text and Theorem 3

above). We begin by providing a succinct summary of
the theoretical analysis of overlapping ConvACs that was
shown by [40], including the necessary technical back-
ground on ConvACs required to understand their results.
[40] shows lower bounds on the rank of the dup-tensor for
various architectures when A is left half of the input and
B the right half, in d = 2, when the convolutional ker-
nel is anchored at the corner instead of at the center like
presented in this letter.

Total
Receptive

Field

Total
Stride

Layer L

Layer L-1

Input Layer

FIG. 5. Illustration of the total receptive field and the total
stride.

For any layer l 2 [L] in a convolutional network, the
local receptive field (or kernel size) K(l) is defined as the
linear size of the window on which each convolutional ker-
nel acts upon, and the stride S(l) is defined as the step
size in each dimension between two neighboring windows
(assumed to be 1 in this letter). The main result of [40]
relies on two architecture dependent attributes that they
referred to as the total receptive field and and the to-
tal stride of the l’th layer, defined as the projections on
the input layer of the local receptive fields and strides
from the perspective of the l’th layer, as illustrated in

03.2 - Representation and Entanglement Properties
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FIG. 1. We demonstrate a mapping from any tensor network with an e�cient contraction algorithm to a compact neural
network. In this figure we illustrate our coarse-grained construction of a Neural Network ✏-approximation of a Matrix Product

State over N sites, each of d degrees of freedom, and bond dimension �. The resulting neural network is of depth Õ

⇣
lnN+

p
1/✏

⌘

and uses only Õ

⇣
N(d+�)�2+

p
1/✏

⌘
edges.

nentially large bond-dimension [29]. An approach map-
ping MPS onto non-standard neural-networks has also
been introduced [31]. Despite the important theoretical
progress, however a direct mapping between generic, e�-
ciently contractible TNS and standard NQS has not been
established to date. This situation for example leaves
open the possibility that TNS can o↵er a general repre-
sentational advantage over NQS representations [32, 33],
and that there might exist compact, contractible TNS
that cannot be expressed by means of compact NQS.

In this work, we establish a direct mapping between
TNS in arbitrary dimension and NQS. By directly con-
structing neural-network layers that perform tensor con-
tractions, we show that e�ciently contractible TNS can
be constructed in terms of polynomially sized neural-
networks. Our result, in conjunction with previously es-
tablished results on the entanglement capacity of NQS,
then demonstrates that NQS constitute a very flexible
classical representation of quantum states, and that TNS
commonly used in variational applications are strictly a
subset of NQS.

Preliminaries – We consider in the following a pure
quantum system, constituted by N discrete degrees of
freedom s⌘(s1, . . . , sN ) (e.g. spins, occupation numbers,
etc.) such that the wave-function amplitudes hs| i =
 (s) fully specify its state. Following the approach intro-
duced in [3], we can represent log( (s)) as g1(s)+i·g2(s),
where g1 and g2 are two outputs of a feed-forward neu-
ral network, parametrized by a possibly large number of
network connections. Given an arbitrary set of quantum
numbers, s, the output value computation of the corre-
sponding NQS can generally be described as two roots of
a directed acyclic graph (V,E), where the value of each

node v 2 V is recursively defined as:

v(s) = �

0

@bv +
X

(u,v)2E

Wu,vu(s)

1

A , (1)

where {Wu,v 2 R}(u,v)2E and {bv 2 R}v2V are the pa-
rameters of the network, and � : R ! R is some non-
linear function known as the activation function, e.g.,
ReLU(x) = max(x, 0) or softplus(x) = log(exp(x) + 1)
[34, 35]. The root nodes of the network can optionally
use the identity instead of a non-linear activation func-
tion. The depth of a neural network is defined as the
maximal distance between an input node and the roots.
Alternatively, a state  (s) can also be viewed as a

complex tensor As1,...,sN that is in turn represented in
terms of tensor factorization schemes. Most forms of ten-
sor factorizations are conveniently described graphically
via Tensor Networks, undirected graphs whose nodes are
tensors and edges specify contractions between connected
tensors. See Figure 4 for illustrated introduction to ten-
sor networks and Penrose diagrams. See right half for
common types of TN.
In contrast with NN, which can be computed in O(|E|)

time, the complexity of TN is dependent on its contrac-
tion order. While finding the optimal contraction or-
der for an arbitrary TN is known to be NP-complete,
for many common TN forms, e.g. Matrix Product
States, e�cient algorithms exist. Two such contraction
schemes are the sequential and parallel contractions that
are depicted in Figure 2. Given a contraction order,
the value of  (s) can alternatively be described in the
form of an arithmetic circuit, i.e., a computational graph
comprising product and weighted-sum nodes. Specif-
ically, the value for a product node v 2 P is given
by v(s) =

Q
(u,v)2E u(s), and for a weighted-sum node

v 2 S is given by v(s) =
P

(u,v)2E Wu,v · u(s), where
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arise naturally:

log(x1 + x2) = log(exp(o1) + exp(o2))

= o1 + log (1 + exp(o2 � o1))

= o1 + softplus(o2 � o1).

For log-space summation of n inputs, we can decompose
it as a binary tree, which gives the log(m) correction
to the depth of the network. With both log-space NN
analogs in place, a non-negative AC can be exactly re-
produce with same asymptotic time complexity.

For the second step, we reduce the general complex
case to the non-negative case. A real number x 2 R
can be represented with a redundant representation of
two non-negative numbers x+, x� � 0 by x = x+ � x�.
Addition and multiplication can be applied directly on
this representation:

x+ y = (x+ + y+)� (x� + y�)

x · y = (x+ · y+ + x� · y�)� (x� · y+ + x+ · y�)

Thus, a real AC can be expressed as the di↵erence of
two non-negative AC, and a complex AC by represent-
ing the real and imaginary parts in this fashion. Fi-
nally, to compute the logarithm of this redundant com-
plex representation, i.e., the log-magnitude and phase,
we employ various univariate approximation schemes.
Since these two operations are smooth and used only at
the end of the network, it results in the additive term
c(✏,m,Wmax, fmin), which is merely logarithmic in the
number of edges of the AC, and double logarithmic with
respect to the magnitudes of the weights and the WF
amplitudes. Due to these weak dependencies of the tar-
get AC, it allows for an approximation with a practically
arbitrary precision.

The immediate implication of Theorem 1 is that NQS
can simulate TNS at least as e�ciently as their TN rep-
resentation, as given by the following corollary:

Corollary 1 For any tensor network quantum state with
a contraction scheme of run-time k, and at most b bits
of precision in computations and parameters, there ex-
ists a neural network that approximate it with a max-
imal error of ✏ and of run-time (number of edges)

O
⇣
k + ln2

�
kb
✏

�
+ ln

�
1
✏

�q
1
✏

⌘
.

For the specific case of MPS, corollary 1 translates to the
following

Corollary 2 For any MPS over N sites, each of local
dimension d, with bond dimension �, and fixed b bits of
precision, there exists a neural network of depth l con-
sisting of m edges that approximates its contraction al-
gorithm up to ✏, where l and m depend on the chosen
contraction scheme:

1. For the sequential scheme, l = Õ
⇣
N +

p
1/✏

⌘
and

m = Õ
⇣
Nd�2 +

p
1/✏

⌘
.

Quantum  
States

Neural

MPS

PEPS*

Gapped 
 1D

Quantum States

FIG. 3. Expressive power of classically-tractable variational
quantum states. Di↵erent classes of quantum states describ-
ing a qudit system with N degrees of freedom and comprising
poly(N) variational parameters are compared. Matrix Prod-
uct States (MPS) can e�ciently represent gapped ground-
states of one-dimensional systems. PEPS* denotes here Pro-
jected Entangled Pair States of bond dimension � that are
exactly or approximately contracted in poly(N,�) time on a
classical computer. Neural Quantum States (NQS) comprise
all polynomially tractable tensor networks, thus include MPS,
and PEPS⇤, while also representing additional states with
volume law entanglement that are not e�ciently described by
planar tensor networks such as MPS and PEPS.

2. For the parallel scheme, Õ(lnN +
p

1/✏) and

m = Õ
⇣
N(d+ �)�2 +

p
1/✏

⌘
.

where Õ denotes big-O while ignoring logarithmic factors.

In turn, this result also allows to use previously estab-
lished rigorous results on MPS to directly quantify the
expressive power of NQS on special classes of quantum
systems. For example, Hastings famously established an
area-law entanglement for the gapped ground state of
one-dimensional systems [39] that directly translates into
an e�cient approximability by MPS [39–42]. Our result
in 2, in connection with the bound established in [39]
implies the following

Corollary 3 Consider a 1D Hamiltonian H defined
on N qudits of finite local dimension d, and with
a non-vanishing spectral gap �. The ground state
of a H can be written as a deep neural network
of depth l = O(lnN +

p
1/✏) and number of edges

m = O (poly(N, 1/✏)).

While the connection we have established is strictly in-
clusive, we show that the inverse does not hold, i.e., that
there exists NQS that cannot be e�ciently reproduced
by widely adopted classes of variational TNS:

Corollary 4 There exist quantum states that can be rep-
resented by neural networks with parameters and runtime
polynomial in the number of sites, that MPS, MERA, and
PEPS tensor networks cannot represent e�ciently unless
they use exponential number of parameters.
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arise naturally:

log(x1 + x2) = log(exp(o1) + exp(o2))

= o1 + log (1 + exp(o2 � o1))

= o1 + softplus(o2 � o1).

For log-space summation of n inputs, we can decompose
it as a binary tree, which gives the log(m) correction
to the depth of the network. With both log-space NN
analogs in place, a non-negative AC can be exactly re-
produce with same asymptotic time complexity.

For the second step, we reduce the general complex
case to the non-negative case. A real number x 2 R
can be represented with a redundant representation of
two non-negative numbers x+, x� � 0 by x = x+ � x�.
Addition and multiplication can be applied directly on
this representation:

x+ y = (x+ + y+)� (x� + y�)

x · y = (x+ · y+ + x� · y�)� (x� · y+ + x+ · y�)

Thus, a real AC can be expressed as the di↵erence of
two non-negative AC, and a complex AC by represent-
ing the real and imaginary parts in this fashion. Fi-
nally, to compute the logarithm of this redundant com-
plex representation, i.e., the log-magnitude and phase,
we employ various univariate approximation schemes.
Since these two operations are smooth and used only at
the end of the network, it results in the additive term
c(✏,m,Wmax, fmin), which is merely logarithmic in the
number of edges of the AC, and double logarithmic with
respect to the magnitudes of the weights and the WF
amplitudes. Due to these weak dependencies of the tar-
get AC, it allows for an approximation with a practically
arbitrary precision.

The immediate implication of Theorem 1 is that NQS
can simulate TNS at least as e�ciently as their TN rep-
resentation, as given by the following corollary:

Corollary 1 For any tensor network quantum state with
a contraction scheme of run-time k, and at most b bits
of precision in computations and parameters, there ex-
ists a neural network that approximate it with a max-
imal error of ✏ and of run-time (number of edges)

O
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k + ln2
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✏
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�
1
✏

�q
1
✏

⌘
.

For the specific case of MPS, corollary 1 translates to the
following

Corollary 2 For any MPS over N sites, each of local
dimension d, with bond dimension �, and fixed b bits of
precision, there exists a neural network of depth l con-
sisting of m edges that approximates its contraction al-
gorithm up to ✏, where l and m depend on the chosen
contraction scheme:

1. For the sequential scheme, l = Õ
⇣
N +

p
1/✏

⌘
and

m = Õ
⇣
Nd�2 +

p
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⌘
.

Quantum  
States

Neural

MPS

PEPS*

Gapped 
 1D

Quantum States

FIG. 3. Expressive power of classically-tractable variational
quantum states. Di↵erent classes of quantum states describ-
ing a qudit system with N degrees of freedom and comprising
poly(N) variational parameters are compared. Matrix Prod-
uct States (MPS) can e�ciently represent gapped ground-
states of one-dimensional systems. PEPS* denotes here Pro-
jected Entangled Pair States of bond dimension � that are
exactly or approximately contracted in poly(N,�) time on a
classical computer. Neural Quantum States (NQS) comprise
all polynomially tractable tensor networks, thus include MPS,
and PEPS⇤, while also representing additional states with
volume law entanglement that are not e�ciently described by
planar tensor networks such as MPS and PEPS.

2. For the parallel scheme, Õ(lnN +
p

1/✏) and

m = Õ
⇣
N(d+ �)�2 +

p
1/✏

⌘
.

where Õ denotes big-O while ignoring logarithmic factors.

In turn, this result also allows to use previously estab-
lished rigorous results on MPS to directly quantify the
expressive power of NQS on special classes of quantum
systems. For example, Hastings famously established an
area-law entanglement for the gapped ground state of
one-dimensional systems [39] that directly translates into
an e�cient approximability by MPS [39–42]. Our result
in 2, in connection with the bound established in [39]
implies the following

Corollary 3 Consider a 1D Hamiltonian H defined
on N qudits of finite local dimension d, and with
a non-vanishing spectral gap �. The ground state
of a H can be written as a deep neural network
of depth l = O(lnN +

p
1/✏) and number of edges

m = O (poly(N, 1/✏)).

While the connection we have established is strictly in-
clusive, we show that the inverse does not hold, i.e., that
there exists NQS that cannot be e�ciently reproduced
by widely adopted classes of variational TNS:

Corollary 4 There exist quantum states that can be rep-
resented by neural networks with parameters and runtime
polynomial in the number of sites, that MPS, MERA, and
PEPS tensor networks cannot represent e�ciently unless
they use exponential number of parameters.
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Sharir, Shashua, and Carleo 
arXiv:2103.10293, 2021 
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04.

Learning the  
Ground State.
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E(W) =
h (W)|H| (W)i

h (W)| (W)i
� E0
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Exact Ground-
State Energy

Expectation Minimization

<latexit sha1_base64="MBsr5nf1Gvl8ILkZs5KBkjJE5ls="></latexit>

E(W) =

P
Z | (Z;W )|2Eloc(Z;W )P

Z | (Z;W )|2

McMillan, Phys. Rev. 138, A442 (1965) 

04.1 - Variational Formulation

Rayleigh 
Quotient
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04.2 - Energy Gradients

<latexit sha1_base64="CL04bVbdUwWMGDRvtoluyzo4kEo="></latexit>

Eloc(Z;W ) =
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* *
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04.3 - Natural Gradients

Equivalent to Imaginary-
Time Evolution  

(Power Method)in  
Variational Manifold

Sandro Sorella et al. 
Physical Review Letters 
80, 4558 (1998) 

Shun-Ichi Amari 
Journal Neural Computation  

10, 251 (1998) 

Sk,k0 = hO
?
kOk0i � hO

?
kihOk0i

X

k0

Sk,k0�pk0 = �Gk

Quantum Geometric 
Tensor or Quantum 
Fisher Information
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04.4 - Variational Learning Algorithm

2.      Estimate Expectation Values and Gradient 

3.                  Estimate Quantum Fisher

4.               Update Parameters

1.     Sample 
<latexit sha1_base64="9wfEx+a6jKcB9mD1Z8zeB2Jy02Q="></latexit>

P (Z;W ) =
| (Z;W )|2P
Z0 | (Z 0;W )|2
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05.

Example  
Applications.
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05.1 - Frustrated Spins

J2

J1

J1-J2 Model

Neel Order Striped OrderSpin Liquid?

0.6?0.4?0.0 J2/J1

Phase Diagram
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05.2 - Heisenberg Limit - Shallow Net

Early (2016) Results With Shallow 
(RBM) Network 

Carleo, and Troyer  
Science 355, 602 (2017) 

10 by 10 cluster
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05.3 - Heisenberg Limit - Deeper Net

(Mildly) deep CNN further improves 

10 by 10 cluster

Choo, Neupert, and Carleo 
Phys. Rev. B 100, 125124 (2019)
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05.4 - Frustrated Case: Accuracy Diagram

NQS is Better

NQS is Worse

Choo, Neupert, and Carleo 
Phys. Rev. B 100, 125124 (2019)

10 by 10 cluster
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05.5 - Origin of the Challenge?

Westerhout, Astrakhantsev, Tikhonov,  
Katsnelson, Bagrov  

Nature Comm. 11, 1593 (2020)

Generalization of amplitudes. In our discussion up to this point,
we concentrated entirely on the quality of generalization of the
wave function sign structure. One may wonder whether it is
indeed the signs rather than amplitudes, which are responsible for
the difficulty of learning the wave function as a whole (this
possibility has been discussed in the context of state tomography
in ref. 2). To prove this statement, we conduct the following
analysis. In the context of learning, overlap between a trial wave
function and the target state can be used to characterize the
effectiveness of NNs in two different ways. First, one can fix the
amplitudes of the wave function and use a NN to learn the signs.
This produces a trial wave function ψsign. Alternatively, one can
fix the sign structure, and encode the amplitudes in a NN to get a
trial wave function ψamp. Clearly, the accuracy of ψamp and ψsign
will depend on the relative complexity of learning amplitudes and
signs of the wave function coefficients. We illustrate statement
(iv) with Fig. 4, where we use overlap to compare the quality of
generalization of signs and amplitudes (using, again, 1% of the
basis for training). Upon increase of J2, one moves from a simple

ordered phase to frustrated regime where overlap drops sharply.
Although the generalization of both signs and amplitudes
becomes harder at the point of phase transition J2/J1= 0.51, drop
in the sign curve is much larger, and at even higher J2 the quality
of the learned states becomes too poor to approximate the target
wave function. At the same time, even deeply in the frustrated
regime generalization of amplitudes, given the exact sign struc-
ture, leads to a decent result. Moreover, generalization quality of
amplitudes does not drop abruptly when εtrain is decreased,
remaining non-zero on very small datasets (see Supplementary
Fig. 3). These observations suggest that it is indeed the sign part
of the wave function that becomes problematic for generalization
in frustrated region. One should keep in mind that difficult to
learn sign structure is not directly related to the famous Quantum
Monte Carlo sign problem. For example, Fig. 2 shows that in
J2→ 0 limit of J1−J2 model, networks have no trouble learning
the sign structure even though in σ̂z basis, there is sign problem
since we are not applying Marshall’s Sign Rule.

Larger clusters. So far we have been exemplifying our results on
24-spin clusters, and it is interesting to see whether the main
observations hold for larger Hilbert spaces as well. Most of the
computations that we performed can be repeated for lattices of
30 spins. Even bigger systems become too resource demanding
and require a more involved algorithm implementation. Never-
theless, for the square lattice of 36 spins (6-by-6), we managed to
compute dependency of generalization on the training dataset size
for several values of J2 ∕ J1. For the detailed analysis of 30-spin
clusters we refer the reader to Supplementary Note 2. One can see
that all the conclusions remain valid—behavior of the general-
ization quality as function of J2 ∕ J1 is very similar to that for 24-
spin clusters, and the dependence on εtrain exhibits a sharp
transition.

What is especially interesting is that the critical size of the
training dataset required for non-zero generalization seems to
scale relatively slowly with the system size. In Fig. 5, for the case
of the square lattice, we show the critical size of the training
dataset as a function of the Hilbert space dimension K. It turns
out, that when one goes from 24 spins (K≃ 2.7 × 106) to 36 spins
(K≃ 9 × 109), it is sufficient to increase the training dataset just by
a factor of 10. This gives us hope that reasonable generalization
quality can be achieved for even larger systems.

Discussion
In this paper, we have analyzed the ability of NNs to generalize
many-body quantum states from a small number of basis vectors
to the whole Hilbert space. The main observation we made is that
for all models we have considered, quality of generalization of the
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Fig. 4 Generalization of signs and amplitudes. We compare generalization
quality as measured by overlap for learning the sign structure (red circles)
and amplitude structure (green squares) for 24-site Kagome lattice for
two-layer dense architecture. Note that both curves decrease in the
frustrated region, but the sign structure is much harder to learn.
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05.6 - Continuous Improvements…

Nomura, and Imada 
arXiv:2005.14142 (2020)
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Map Fermions to 
Spins 

Bravyi-Kitaev 
Mapping 

Jordan-Wigner 
Mapping 

Pro: Simple Mapping  

Con: N-Body, non-local Spin 
Operators  

Pro: log(N)-Body, quasi-local 
Spin Operators  

Con: More Involved Mapping 

Choo, Mezzacapo, and Carleo 
Nature Comm.  11,  2368 (2020)

05.7 - Fermions: Back to the Spin Problem
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2

a) b)

FIG. 1. Comparing the accuracy of fermionic neural-network quantum states with other quantum chemistry approaches. Shown
are dissociation curves for a) C2 and b) N2, in the sto-3g basis with 20 spin-orbitals. The RBM used has 40 hidden units, and
it is compared both to coupled-cluster approaches (CCSD, and CCSD(T)) and exact FCI energies.

on a direct encoding of electronic configurations. This
task is achieved by mapping the fermionic problem onto
an equivalent spin problem, and then solving the latter
with spin-based neural-network quantum states. Using
techniques from quantum information, we study differ-
ent model agnostic mappings. We show results for sev-
eral small diatomic molecules in minimal Gaussian ba-
sis sets, where our approach reaches chemical accuracy
(< 5kcal/mol) or better. The current challenges in ex-
tending the method to larger basis sets and molecules are
also discussed.

Electronic structure on spin systems.- We consider
many-body molecular fermionic Hamiltonians in second
quantization formalism,

H =
X

i,j

tij c
†
i cj +

X

i,j,k,m

uijkm c†i c
†
kcmcj , (1)

where we have defined fermionic annihilation and
creation operators with the anticommutation relation
{c†i , cj} = �i,j on N fermionic modes, and one- and
two-body integrals tij and uijkm. The Hamiltonian (1)
can then be mapped to interacting spin models with the
Jordan-Wigner [18] mapping, or the more recent parity or
Bravyi-Kitaev [19] encodings, which have been developed
in the context of quantum simulations. These encodings
can be expressed in the compact form
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where we have defined an update U(j), parity P (j)
and remainder R(j) sets of spins, which depend on the

particular mapping considered [20, 21], and �(x,y,z)
i de-

note Pauli matrices acting on lattice site i. In the well
known case of the Jordan-Wigner transformation, the
update, parity and remainder sets become U(j) = j,
P (j) = {0, 1, ...j � 1}, R(j) = P (j), and the mapping
takes the simple form
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where �+(�)
j = (�x

j + (�)i�y
j )/2. In all cases, the final

outcome is a spin Hamiltonian with the general form

Hq =
rX

j=1

hj�j , (4)

defined as a linear combination with real coefficients hj

of �j , M -fold tensor products of single-qubit Pauli op-
erators I,�x,�y,�z. Additionally, under such mappings,
there is a one to one correspondence between spin config-
uration ~� and the original particle occupations ~n�. In the
following, we will consider the interacting spin Hamilto-
nian (4) as a starting point for our variational treatment.

Neural-network quantum states.- In order to have a
flexible variational parameterization for the ground-state
of the electronic hamiltonian, we use neural-network-
based variational wave functions, dubbed neural-network
quantum states [10] (NQS). One conceptual interest of
NQS is that, because of the flexibility of the underly-
ing non-linear parameterization, they can be adopted to
study both equilibrium [22, 23] and out-of-equilibrium
[24–29] properties of diverse many-body quantum sys-
tems. In this work we adopt a simple neural-network
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FIG. 1. Comparing the accuracy of fermionic neural-network quantum states with other quantum chemistry approaches. Shown
are dissociation curves for a) C2 and b) N2, in the sto-3g basis with 20 spin-orbitals. The RBM used has 40 hidden units, and
it is compared both to coupled-cluster approaches (CCSD, and CCSD(T)) and exact FCI energies.

on a direct encoding of electronic configurations. This
task is achieved by mapping the fermionic problem onto
an equivalent spin problem, and then solving the latter
with spin-based neural-network quantum states. Using
techniques from quantum information, we study differ-
ent model agnostic mappings. We show results for sev-
eral small diatomic molecules in minimal Gaussian ba-
sis sets, where our approach reaches chemical accuracy
(< 5kcal/mol) or better. The current challenges in ex-
tending the method to larger basis sets and molecules are
also discussed.

Electronic structure on spin systems.- We consider
many-body molecular fermionic Hamiltonians in second
quantization formalism,

H =
X

i,j

tij c
†
i cj +

X

i,j,k,m

uijkm c†i c
†
kcmcj , (1)

where we have defined fermionic annihilation and
creation operators with the anticommutation relation
{c†i , cj} = �i,j on N fermionic modes, and one- and
two-body integrals tij and uijkm. The Hamiltonian (1)
can then be mapped to interacting spin models with the
Jordan-Wigner [18] mapping, or the more recent parity or
Bravyi-Kitaev [19] encodings, which have been developed
in the context of quantum simulations. These encodings
can be expressed in the compact form
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where we have defined an update U(j), parity P (j)
and remainder R(j) sets of spins, which depend on the

particular mapping considered [20, 21], and �(x,y,z)
i de-

note Pauli matrices acting on lattice site i. In the well
known case of the Jordan-Wigner transformation, the
update, parity and remainder sets become U(j) = j,
P (j) = {0, 1, ...j � 1}, R(j) = P (j), and the mapping
takes the simple form
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j )/2. In all cases, the final

outcome is a spin Hamiltonian with the general form

Hq =
rX

j=1

hj�j , (4)

defined as a linear combination with real coefficients hj

of �j , M -fold tensor products of single-qubit Pauli op-
erators I,�x,�y,�z. Additionally, under such mappings,
there is a one to one correspondence between spin config-
uration ~� and the original particle occupations ~n�. In the
following, we will consider the interacting spin Hamilto-
nian (4) as a starting point for our variational treatment.

Neural-network quantum states.- In order to have a
flexible variational parameterization for the ground-state
of the electronic hamiltonian, we use neural-network-
based variational wave functions, dubbed neural-network
quantum states [10] (NQS). One conceptual interest of
NQS is that, because of the flexibility of the underly-
ing non-linear parameterization, they can be adopted to
study both equilibrium [22, 23] and out-of-equilibrium
[24–29] properties of diverse many-body quantum sys-
tems. In this work we adopt a simple neural-network

Spin Hamiltonian is a sum of 
product of Pauli matrices

Jordan Wigner “strings” take into 
account exchange symmetry  

05.8 - Jordan-Wigner Mapping
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Compute signs using Fenwick trees 
instead of linear products 

Strings have log(N) length instead of N 

3

0 1 2 3 4 5 6

n6+
x5+
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n5+
x4

n4n3+
x2+
x1

n2
n1+
x0

n0

FIG. 1: Fenwick tree of depth 3 for N = 7. The structure
can be constructed by taking the first node and making it

dependent on contents of the node half way (rounded down)
in the lattice and proceeding recursively for halves of the
site array. The example here is illustrated for N = 7. Odd
N has been chosen in order to show a construction of the

mapping for N not being a power of 2, a restriction
implicitly imposed in [18]. Content of the white boxes
corresponds to the information stored in each node.
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FIG. 2: Fenwick tree of depth 3 for N = 8. Fenwick trees for
N = 2d can be also described by a partial ordering on tree
node indices. Suppose we write the indices in binary as in
the tree on the right. Then a bitstring with h > 0 zeroes

labels a child of another bitstring with h− 1 zeroes given by
flipping the last 0 of the string to 1. For example, 101, 011
and 110 are all children of 111. This construction manifests
a possible connection to algebraic coding, as every path from

the root to a leaf gives a Gray code[23, 24]. Other
definitions can be found, but working out examples is the
fastest way to familiarize oneself with the construction.

The remaining bits are given by:

x0 = n0, x1 = n1 + x0, x2 = n2,

x3 = n3 + x2 + x1, x4 = n4, x5 = n5 + n4.

As a specific example, n0 n1 . . . n6 = 0111010 is en-
coded as x0 x1 . . . x6 = 0111010.

2. Bravyi-Kitaev Transformation

The BK transform uses Fenwick trees to improve qubit
operator locality of the fermionic parity counting string
to O(logN), while increasing fermionic occupancy up-
date cost to O(logN). The raising/lowering operators
are hence mapped with O(logN) operator locality over-
head, which is substantially better than O(N) for JW.

Starting with the simplest example, consider a†2 ap-
plied to the second fermionic site in a qubit register
|x0 x1 . . . x6〉 encoding an occupancy state |n0 n1 . . . n6〉
of 7 fermionic sites as in Fig. 1. This operator acts as:

a†2 → Z1 |1〉 〈0|2 X3 X6 ,

on the encoded states, as one needs to count the ex-
citation parity of 0 and 1 by applying Z1, change the
occupancy of the second node by applying |1〉 〈0|2 and
ensure consistency of the encoding by updating sites 3
and 6 (ancestors of 2) with X3 and X6.

Mapping a†j for a general j is more complicated, as
one has to condition application of |0〉 〈1|j or |1〉 〈0|j on
content of children of j in the Fenwick tree. This is the
case for j = 3 in Fig. 1 for example. If the third fermionic
site is initially unoccupied (n3 = 0), the raising operator
changes n3 from 0 to 1. In the encoded representation,
the third qubit stores x3 = n0 + n1 + n2 + n3 = (x1 +
x2) + n3. So if (x1 + x2) = 1, a qubit lowering operator
|0〉 〈1|3 should be applied in the encoded representation
instead of |1〉 〈0|3. It follows that one has to condition this
operation on the children’s parity. The operator hence
maps to:

a†3 →− (|1〉 〈1|1 |0〉 〈0|2 + |0〉 〈0|1 |1〉 〈1|2) |0〉 〈1|3 X6

+ (|0〉 〈0|1 |0〉 〈0|2 + |1〉 〈1|1 |1〉 〈1|2) |1〉 〈0|3 X6 .

The above description considerably simplifies by work-
ing in the Majorana basis:

c3 = a†3 + a3 → Z1 Z2 X3 X6 .

Consider now the set of children with indices less than j
of all ancestors of j. We label this set as C(j). For exam-
ple, the set of children of all ancestors of qubit 9 in Fig. 3
is given by {7, 9, 10, 11, 13, 14} and out of this, only 7 is
less than 9 and hence C(9) = {7}. For consistency with
refs. [18, 19], we denote the set of children of the j-th site
by F (j) and work with a set P (j) = C(j)∪F (j). If U(j)
labels the set of all ancestors of j, then:

cj = aj + a†j → ZP (j) Xj XU(j) , (2)

dj = i
(

a†j − aj
)

→ ZP (j)/F (j) Yj XU(j) = ZC(j) Yj XU(j) ,

(3)

where ZP (j) implies Pauli Z operators applied to qubits
in a set P (j).

Note that P (j) ∩ U(j) = ∅, since all nodes in U(j)
have indices greater than j while P (j) have all indices
less than j. Also note that the dj operator acts trivially
on the F (j) qubits. Locality of the cj Majorana on qubits
is hence never better than dj , since no operators are ap-
plied to children of the j-th node (Eq. 3). The worst-case
locality for the cj Majorana operator is therefore given
by |U(j) ∪ P (j)|+ 1 = |U(j)|+ |P (j)|+ 1. In fact, for a
Fenwick tree of N = 2d sites, the locality of cj becomes
exactly log2 N + 1 as we now show:

Proof. Let d = 0. Then N = 1 and the cj locality is
log2 1 + 1 = 1 as there is only single node in the tree.
Now suppose the locality is log2 N + 1 for a tree with
N = 2d nodes. The 2N = 2d+1 tree is constructed by
connecting roots of two N trees - compare for example
the descendants of 7 to the tree of the remaining nodes
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I. MODEL

We are interested in solving Hamiltonians of the form

Ĥfermion =�
ij

aijc
†
icj + �

ijkl

bijklc
†
ic

†
jckcl + h.c. (1)

where c
†
i (ci) are fermionic operators which creates (annihilates) an electron in orbital i. In order to handle the fermionic anti-

commutation, we map this model to a system of spins via some transformation, Jordan-Wigner or Bravyi-Kitaev or parity.

II. RESULTS

A. Small Molecules Dissociation curves

We first consider small molecules in a minimal basis set (sto-3g). We show in Fig. 1 the dissociation curves for C2 and N2,
where it can be seen that the performance of the RBM is better than CCSD or CCSD(T).

a) b)

FIG. 1. We show here the dissociation curves for a) C2 and b) N2, in the sto-3g basis with 20 spin-orbitals. The size of the Hilbert spaces are
44100 and 14400 respectively. The RBM used has hidden unit density ↵ = 2. (Optimisation Parameters: learning rate = 0.03, regularisation =
0.01, sample size = 100000)

B. Mapping Type

We can also see in Fig. 2 that the RBM is generally agnostic towards the mapping type.

C. Water

When attempting to optimise the RBM for the water molecule, we encountered some issues in the larger basis sets (6-31g (26
spin-orbitals) and ccpvdz (48 spin-orbitals)) despite having perfect accuracy in the sto-3g (14 spin-orbitals) basis.
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FIG. 2. We compare the accuracy of the RBM with various mapping types.

D. Varying Number of Samples

To investigate further we concentrate on the 6-31g basis. We varied the sample size and also tried exact sampling. It is

FIG. 3. We show here converged energy of H2O in the 6-31g basis (26 spin-orbitals) as we vary the sample size. The size of the hilbert space
is 1656369. (Optimisation Parameters: learning rate = 0.03, regularisation = 0.01)

clear that having more samples drastically improves the accuracy, while exact sampling does not seem to matter provide any
improvements. Considering the Hilbert space dimensions (1656369) in the present case and also for the smaller bases in Fig. 1,
it seems that the sample size has to exceed the Hilbert space dimensions in order to provide accurate results.

E. Varying Hidden Unit Density

While it seems unlikely to be a representability issue, for completeness we also vary the hidden unit density. It is clear
from Fig. 4 that increasing the hidden unit density does not lead to improved performance. In the inset, we see also that the
convergence become unstable as more hidden units are used.

Ansatz is almost 
insensitive   to the 

locality of the 
mapping
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state | ni ⌘ | i with the silent assumption that this actually denotes a family. We now consider
the following definition.

Definition 1 An n-qubit state | i is called ‘computationally tractable’ (CT) if the following con-
ditions hold:

(a) it is possible to sample in poly(n) time with classical means from the probability distribution
Prob(x) = |hx| i|2 on the set of n-bit strings x, and

(b) upon input of any bit string x, the coe�cient hx| i can be computed in poly(n) time on a
classical computer.

For convenience, in (b) we require the coe�cients hx| i to be computable with perfect precision, a
notion which may lead to rather pathological situations when e.g. irrational numbers are involved.
The results in this paper can however straightforwardly be generalized to the case where hx| i
can be computed e�ciently with exponential precision, i.e. up to m significant bits in poly(n,m)
time. As in the present work the distinction between these two types of accuracies is not essential
(in contrast to the distinction between polynomial and exponential precision, which is crucial), for
clarity we state all results w.r.t. the notion of perfect accuracy. Also in other places in the text
where we refer to ‘perfect accuracy’, the results in question immediately generalize to the case of
exponential precision.

Note that (a) and (b) are highly dependent on the classical description of the state | i that is
provided. Therefore, strictly speaking it would be more precise to call a state | i CT relative to
this classical description. In this paper we will only encounter situations where each state has a
natural (e�cient) description that will be obvious from the context. It will always be assumed that
this particular description is provided. For example, the classical description of a state generated
by a poly-size quantum circuit acting on, say, the all-zeroes input, will always be assumed to
be the circuit that generates the state. As another example, for every complete product state
| i = | 1i ⌦ . . . ⌦ | ni we will assume | i to be specified in terms of the ‘obvious’ description of
| i consisting if the 2n complex coe�cients h0| ii and h1| ii.

Even though conditions (a) and (b) are similar in nature, we provide evidence that these
conditions are incomparable. In particular, the following complexity theoretic argument implies
that it is highly likely that there exists states satisfying (b) but not (a). Consider any e�ciently
computable function f : {0, 1}n ! {0, 1} for which it is promised that there exists a unique x0

such that f(x0) = 1, and define the n-qubit state | i =
P

x f(x)|xi = |x0i. Note that the state
| i satisfies condition (b). Assuming that (b) implies (a), it follows that it is possible to e�ciently
sample from the distribution {|hx| i|2}. But this distribution assigns a zero probability to each bit
string x except x0, which has unit probability. Hence, the possibility of e�ciently sampling from
this distribution implies that x0 can be determined e�ciently. Regarding f as a verifier circuit for
an NP problem, it would immediately follow that every problem in NP with a unique witness is in
P. This last property is not likely to be true [21].

Next we state a useful su�cient (but not necessary) criterion to assess whether condition (a)
holds for a given state. To state this result, we need the following notation. For an n-qubit state
| i, let pS,y(| i) ⌘ pS,y denote the probability of obtaining the bit string y = (yi : i 2 S) as an
outcome when measuring the qubits in the set S ✓ {1, . . . , n}. We can then state the following
lemma; a proof can be found in e.g. [11].

Lemma 1 Let | i be an n-qubit state. Suppose that, on input of an arbitrary S and y, the
probability pS,y can be computed in poly(n) time. Then it is possible to sample in poly(n) time from
the probability distribution {|hx| i|2}.

Several important state families turn out to be computationally tractable, as illustrated next.

8

indexed by x together with the row indices associated with each of these non-zero entries, all in
poly(n) time. Equivalently, A is e�ciently column-computable if it is possible to compute the
2s quantities ↵i(x) and ri(x) (i = 1, . . . , s) in poly-time. The operation A is called e�ciently
row-computable if AT is e�ciently column-computable. Finally, A is called e�ciently computable
if it is both e�ciently row- and column-computable. All e�ciently computable sparse unitary
operations can be implemented e�ciently on a quantum computer [29]. In this paper we will only
consider sparse operations that are e�ciently computable.

The following are some examples of e�ciently computable sparse operations.

• Examples of e�ciently computable sparse (ECS) operations:

– Every e�ciently computable basis-preserving operation is ECS.

– Every d-qubit gate G acting within an n-qubit circuit, represented by the matrix G ⌦ I
where I denotes the identity acting on n� d qubits, is 2d-sparse. If d = O(log n) then such
an operation is ECS.

– Every operation that is a linear combination of poly(n) ECS operations, is ECS. It follows that
every operator H =

Pm
i=1 Hi which is a sum of m = poly(n) d-local observables Oi (with

d = O(log n)) is ECS. This means that observables such as Hamiltonians and correlation
operators are typically ECS.

– Let U represent an n-qubit poly-size circuit of basis-preserving elementary gates (e.g. To↵oli,
CNOT, PHASE, CPHASE, etc.), interspersed with k gates V1, . . . , Vk at arbitrary places in
the circuit, each of which acts on at most d qubits. It is required that kd = O(log n);
otherwise the Vi are arbitrary. Then U is ECS. To see this, expand each gate Vi as a linear
combination of 4d Pauli products and note that every Pauli product is e�ciently computable
basis-preserving. Consequently, U can be written as a linear combination of 4dk = poly(n)
e�ciently computable basis-preserving operations, showing that U is ECS.

– ECS operations often arise in the context of quantum algorithms, related e.g. to unitary
group representations; see e.g. [29] and references within.

We are now in a position to state the following result, which constitutes the main technical
ingredient in this work regarding the use of sampling techniques in classical simulation.

Theorem 3 Let | i and |'i be CT n-qubit states and let A be an e�ciently computable sparse
(not necessarily unitary) n-qubit operation with kAk  1. Then there exists an e�cient classical
algorithm to approximate h'|A| i with polynomial accuracy.

Note that theorem 1 immediately follows from theorem 3. Before proving this result in its most
general form, as a warm-up we prove a special instance, taking A to be the identity. Hence, we
are concerned with the estimation of overlaps between CT states. This special case is proved
beforehand to illustrate the sampling methods used in this work, without the more technically
involved arguments required in the proof of theorem 3. Thus, we set out to prove the following
property, formulated in terms of a lemma.

Lemma 3 Let | i and |'i be two CT n-qubit states. Then there exists an e�cient classical
algorithm to approximate h'| i with polynomial accuracy.

Proof: Denote px := |hx| i|2 and qx := |hx|'i|2. Since | i and |'i are CT states, it is possible
to sample e�ciently from the probability distributions {px} and {qx}. Define the function � :
{0, 1}n ! {0, 1} by �(x) = 1 if px � qx and �(x) = 0 otherwise, for every n-bit string x, and define

11

with the additional convention that Gi(y) is zero if there are no x such that ri(x) = y and ↵i(x) 6= 0.
With this definition, the second term in the r.h.s. of (6) is equal to hGii =

P
y qyGi(y). We now

make the following claims. Claim 1: the function Gi is e�ciently computable; and Claim 2:
|Gi(y)|  s for every y. A proof of claims 1 and 2 implies that hGii can be estimated in poly-time
with polynomial accuracy due to the Cherno↵-Hoe↵ding bound. But then also �i can be estimated
e�ciently, thus completing the proof.

We now prove Claim 1. Since A is s-sparse, every row y has at most s non-zero entries.
Equivalently, the following set contains at most s strings x:

{x : 9j 2 {1, . . . , s} s.t. y = rj(x) and ↵j(x) 6= 0}. (9)

Hence, a fortiori, for every fixed i there are at most s di↵erent x such that ri(x) = y and ↵i(x) 6=
0. Moreover, given an arbitrary y it is possible to e�ciently determine all these x’s and the
corresponding coe�cients ↵i(x). This is done in two steps: first, since A is e�ciently (row-
)computable, given a row index y it is possible to compute all (at most s) strings x in the set (9) in
poly-time; second, for all those x one computes ri(x) and ↵i(x)—this is possible in poly-time since
A is e�ciently column-computable—and verifies whether ri(x) is equal to y; those x for which
ri(x) = y are kept, the others discarded.

It follows that Gi(y) is a sum of at most s = poly(n) terms, each of which is e�ciently com-
putable. Thus, Claim 1 is proved. Moreover, Claim 2 now immediately follows as well, since the
modulus of every term in the sum (8) is smaller than one and there are at most s terms in the
sum. This proves theorem 3. ⇤

Remark: poly-ECS operations.— In the definition of ECS operations and in the subsequent
statement of theorem 3, we have required that the non-zero entries of A can be computed e�ciently
with perfect precision. Theorem 3 also holds for sparse operations where, instead, these coe�cients
can be estimated e�ciently with polynomial accuracy, which is a significant relaxation. Call an
n-qubit operation A (kAk  1) poly-ECS if it is sparse, and if (i) on input of an arbitrary column
index x, it is possible to determine in poly-time all those row indices y such that hy|A|xi 6= 0 and if
the corresponding nonzero entries hy|A|xi can be estimated in poly-time with polynomial accuracy,
and (ii) similarly for the row indices y. Theorem 3 then also holds for poly-ECS operations. The
proof is completely analogous to the above proof of theorem 3. The only di↵erence is that now the
functions Fi(x) and Gi(x) can no longer be computed exactly, but only with polynomial accuracy.
However, this su�ces to invoke the Cherno↵-Hoe↵ding bound (cf. the Appendix). This remark
will play an important role in the discussion of Simon’s algorithm i.e. in the proof of theorem 2.⇧

We conclude this section with two corollaries of theorem 3. Corollary 1 shows that expectation
values of local observables can be estimated e�ciently classically for every CT state. This result
may potentially be of use in e.g. variational Monte Carlo studies of strongly correlated systems
(this is work in progress). Corollary 2 will be of use when we discuss the Deutsch-Jozsa algorithm
in section 6.2.

Corollary 1 Let | i be an n-qubit CT state and let O be a d-local observable with d = O(log n) and
kOk  1. Then there exists an e�cient classical algorithm to estimate h |O| i with polynomial
accuracy.

Proof: this result follows immediately from theorem 3 since every d-local O with d = O(log n)
is ECS. Here we provide a short alternative proof that does not require the formalism used in
the proof of theorem 3. Every observable O of the form considered can be written as a linear
combination of N = poly(n) Pauli operators: O =

PN
i=1 aiPi, with |ai|  1. Consequently,

hOi := h |O| i =
X

aih |Pi| i. (10)

13
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inputs si, . . . , sN for the i’th output vector, i.e. ensur-
ing that the contributions of higher-ordered spins to the
output of the network vanish. PixelCNN [17] is such an
architecture, and is built as a sequence of masked convo-
lutional layers, whose filters are restricted to having zeros
at positions “ahead”. For example, in a one dimensional
system, a filter of width R, where R is odd, would be con-
strained to have (w1, . . . , w(R�1)/2, 0, . . . , 0), and thus the
ith output of each layer depends uniquely on the indices
at s1, . . . , si�1.

A chief advantage of networks with the autoregressive
property, is that directly drawing samples according to
P (s) is conceptually straightforward. One can sample
each si in sequence, according to its given conditional
probability that depends just on the previously sampled
(s1, . . . , si�1). At a first glance it might seem that this
sampling procedure would requires N sequential forward
passes to compute each conditional probability. How-
ever, when using the PixelCNN architecture it is possi-
ble to cache most of the computations in each forward
pass, exploiting the intrinsic sparseness of the network
weights [18]. Thus, the complexity of sampling a full
string s1 . . . sN can be reduced to the complexity of just
a single forward pass.

Our NAQS model for representing wave-function is
based on the same NADE principles so-far described.
Specifically, just as probability functions can be factor-
ized into a product of conditional probabilities, we repre-
sent a normalized wave-function as a product of normal-
ized conditional wave-functions, such that

 (s1, . . . , sN ) =
NY

i=1

 i(si|si�1, . . . , s1), (2)

where  i(si|si�1, . . . , s1) are such that, for any fixed
(s1, . . . , si�1) 2 {1, . . . , M}i�1, they satisfy the normal-
ization condition

P
s0 | i(s0|si�1, . . . , s1)|2 = 1. If this

condition holds, then a strong normalization condition
for the full wave-function follows (see app. A for proof):

Claim 1 Let  : [M ]N ! C such that  (s1, . . . , sN ) =QN
i=1  i(si|si�1, . . . , s1), where { i}Ni=1 are normalized

conditional wave-functions. Then,  is normalized, i.e.,P
s1,...,sN

| (s1, . . . , sN )|2 = 1.

As in the NADE case, we represent condi-
tional wave-function with an ANN accepting
(s1, . . . , si�1) and outputting a complex vector
vi ⌘ (vi(s1), vi(s2) . . . vi(sM )) 2 CM for each of
the M possible values taken by the local quantum
numbers si. To ensure that each complex output
vector represents a normalized conditional wave-
function, we normalize it according to the l2-norm,

i.e.,  i(si|si�1, . . . , s1) = vi(si)/
qP

s0 |vi(s0)|
2. Given

this parametrization, the full wave-function amplitude
 (s1 . . . sN ) is easily obtained, once all the vectors
v1, . . . ,vN have been computed. As in the probabilistic

autoregressive model, we can represent the entire NAQS
by a single neural network outputting N complex
vectors, as illustrated in Fig. 1a.

Moreover, there is a special relationship between
a NAQS and its induced Born probability, since
| (s1, . . . , sN )|2 =

QN
i=1 | i(si|si�1, . . . , s1)|2, implying

that | i(s)|2 is a valid conditional probability. Thus,
the induced Born probability of a NAQS has the exact
same structure of a NADE model. Specifically, taking the
squared magnitude of its output vectors, i.e., v̄i = |v̂i|2,
transform NAQS into a standard NADE representation
of this distribution, which importantly includes its ef-
ficient and exact sampling method. In rem contrast to
standard MCMC sampling employed for correlated wave-
functions, NAQS allows for direct, e�cient sampling with
the computational complexity of a single forward pass, as
depicted in Fig. 1b.
Optimization.– The NAQS representation of many-

body wave functions can be used in practice for sev-
eral applications. These include for example ground-
state search [7], quantum-state tomography [19], dynam-
ics [7], and quantum circuits simulation [20]. Here we
more specifically focus on the task of finding the ground
state of a given Hamiltonian H. In this context, we de-
note by  W the wave-function represented by a NAQS
of a fixed architecture that is parameterized by W, and
we wish to find W values that minimize the energy, i.e.,

E(W) ⌘ h W |H| Wi = Es⇠| W |2 [Eloc(s; W)] (3)

Eloc(s; W) ⌘
X

s0

Hs,s0
 W(s0)

 W(s)
(4)

W⇤ = argmin
W

E(W), (5)

where H is usually a highly sparse matrix, and so com-
puting Eloc for a given sample takes at most O(N) for-
ward passes.

The common approach for solving the optimization
problem above with an NQS is to estimate the gradient
of E(W) with respect to W, and use variants of gradient
descent to find the minimizer of E(W). Estimating the
gradient can be done by first employing a variant of the
log-derivative trick, i.e.,

@E

@W = Es⇠| W |2


2 Re

✓
(Eloc(s)

⇤ � E⇤)
@ log W
@W

◆�
.

(6)

Now, while we can e�ciently compute the log deriva-
tive of  W , exactly computing the expected value is in-
tractable, but we can still approximate it by computing
its value over a finite batch of samples {s(i)}Bi=1:

@E

@W ⇡ 2

B

BX

i=1

Re

0

@

0

@E⇤
loc(s

(i))-
1

B

BX

j=1

E⇤
loc(s

(j))

1

A@log W
@W

1

A .

(7)
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v1, . . . ,vN have been computed. As in the probabilistic

autoregressive model, we can represent the entire NAQS
by a single neural network outputting N complex
vectors, as illustrated in Fig. 1a.

Moreover, there is a special relationship between
a NAQS and its induced Born probability, since
| (s1, . . . , sN )|2 =

QN
i=1 | i(si|si�1, . . . , s1)|2, implying

that | i(s)|2 is a valid conditional probability. Thus,
the induced Born probability of a NAQS has the exact
same structure of a NADE model. Specifically, taking the
squared magnitude of its output vectors, i.e., v̄i = |v̂i|2,
transform NAQS into a standard NADE representation
of this distribution, which importantly includes its ef-
ficient and exact sampling method. In rem contrast to
standard MCMC sampling employed for correlated wave-
functions, NAQS allows for direct, e�cient sampling with
the computational complexity of a single forward pass, as
depicted in Fig. 1b.
Optimization.– The NAQS representation of many-

body wave functions can be used in practice for sev-
eral applications. These include for example ground-
state search [7], quantum-state tomography [19], dynam-
ics [7], and quantum circuits simulation [20]. Here we
more specifically focus on the task of finding the ground
state of a given Hamiltonian H. In this context, we de-
note by  W the wave-function represented by a NAQS
of a fixed architecture that is parameterized by W, and
we wish to find W values that minimize the energy, i.e.,

E(W) ⌘ h W |H| Wi = Es⇠| W |2 [Eloc(s; W)] (3)

Eloc(s; W) ⌘
X

s0

Hs,s0
 W(s0)

 W(s)
(4)

W⇤ = argmin
W

E(W), (5)

where H is usually a highly sparse matrix, and so com-
puting Eloc for a given sample takes at most O(N) for-
ward passes.

The common approach for solving the optimization
problem above with an NQS is to estimate the gradient
of E(W) with respect to W, and use variants of gradient
descent to find the minimizer of E(W). Estimating the
gradient can be done by first employing a variant of the
log-derivative trick, i.e.,

@E

@W = Es⇠| W |2


2 Re

✓
(Eloc(s)

⇤ � E⇤)
@ log W
@W

◆�
.

(6)

Now, while we can e�ciently compute the log deriva-
tive of  W , exactly computing the expected value is in-
tractable, but we can still approximate it by computing
its value over a finite batch of samples {s(i)}Bi=1:

@E

@W ⇡ 2

B

BX

i=1

Re

0

@

0

@E⇤
loc(s

(i))-
1

B

BX

j=1

E⇤
loc(s

(j))

1

A@log W
@W

1

A .

(7)

Normalized 
“Conditionals” 

Sharir, Levine, Wies, Carleo, and Shashua 
Phys. Rev. Lett. 124, 020503 (2020)
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FIG. 1. A Neural Autoregressive Quantum State is a neural network that represents a normalized wave-function,  (s1, . . . , sN ),
by factoring it to a sequence of normalized conditional wave-functions, denoted by  i(si|si�1, . . . , s1) for the i’th particle (see
eq. 2). The network represents these conditional wave-functions as vector outputs that depend just on previous particles, which
are then normalized according to the l2-norm. This method is inspired by how autoregressive neural networks represent a
normalized probability via the chain rule, i.e., P (x1, . . . , xN ) =

Q
i P (xi|xi�1, . . . , x1). In practice, the network represents the

conditional wave-functions in log-space for numerical stability, i.e. the conditional wave-functions are represented as ln i, the
l2-normalization is realized by the operation vi � 0.5 ln

P
k |exp(vk)|

2, and the product is replaced by a sum. (a) Illustration of
a deep 1D-convolutional NAQS model following the PixelCNN [17] architecture. Each column of nodes represent a layer in the
network, starting with the input layer representing the N -particle configuration (s1, . . . , sN ). Each internal node in the graph
is a complex vector computed according to its layer type. Namely, masked convolutions are limited to having local connectivity,
where a node at the j’th row is only connected to nodes with connections to si where i < j. All inputs to a node at the l’th layer
are multiplied by a matrix W (l), shared across all rows in the same layer, and followed by applying a non-linear element-wise
function � : C ! C. (b) Depicts the exact sampling algorithm for NAQS, where empty nodes represent unused nodes, and filled
but faded nodes represent cached results from previous steps. The quantum number of each particle is generated sequentially,
by computing its respective conditional wave-function, and sampling according to the squared magnitude. Notice that only a
single row is processed at each step, and so sampling a complete configuration has the same runtime as a single forward pass.

The quality of the above approximation depends on the
batch size, B, but also on the degree of correlations be-
tween the individual samples. The advantages of our di-
rect sampling method supported by NAQS over MCMC
are twofold in this context: (i) Faster sampling: each
individual sample can be generated with fewer network
passes, and generating a batch of samples is embarrass-
ingly parallel, as opposed to the sequential nature of
MCMC; (ii) Faster convergence: because the generated
samples are exact and i.i.d., and so result in more accu-
rate estimates of the gradient at each step.

It is also worth remarking that NAQS allow to e↵ec-
tively move the scope and potentialities of variational
quantum states significantly closer to the state-of-the-art
in ML. This is mostly because the inherent complexity
of sampling from deep networks with MCMC has limited
early NQS applications to rather shallow neural-network
architectures. Below, we empirically demonstrate that
NAQS coupled with these advanced optimization proce-
dure can find ground states of very large systems in a
significantly shorter amount of time.

Experiments.– As a first benchmark for our approach,
we consider a case where MCMC sampling can be
strongly biased. A paradigmatic quantum system ex-
hibiting this issue is found in the ferromagnetic phase of
the transverse field Ising model. The Hamiltonian for

h NAQS Energy QMC Energy NAQS h|�z|i QMC h|�z|i
2 -2.4096022(2) -2.40960(3) 0.78326(2) 0.78277(38)
2.5 -2.7476550(5) -2.74760(3) 0.57572(3) 0.57566(63)
3 -3.1739005(5) -3.17388(4) 0.16179(4) 0.16207(54)
3.5 -3.6424799(3) -3.64243(4) 0.11094(3) 0.11011(30)
4 -4.1217979(2) -4.12178(4) 0.09725(2) 0.09728(24)

TABLE I. Shows estimating ground states observables using
NAQS is very accurate. for each h we optimize NAQS using
two stages. In the first noisy stage we use small batch of 100
samples, then after the NAQS became closer to the ground
state we increase the batch size to reduce the noise in the
gradient. Afterward the observables estimation done with
{x}1200000n=1 ⇠ | (x)|2

this model is given by:

H = �J
X

<i,j>

�i
z�

j
z � �

X

i

�i
x, (8)

where the summation runs over pairs of lattice edges.
Here we study the case of a 2D square lattice with open
boundary conditions, and for varying strenghts of the
transverse field. The system is in a ferromagnetic phase
when the transverse magnetic field � is weak with respect
to the coupling constant, and specifically in 2D when
� < �c ' 3.044J [21].

In order to verify the correctness of the model pro-

06.4 - Using Masked Deep Networks
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FIG. 1. A Neural Autoregressive Quantum State is a neural network that represents a normalized wave-function,  (s1, . . . , sN ),
by factoring it to a sequence of normalized conditional wave-functions, denoted by  i(si|si�1, . . . , s1) for the i’th particle (see
eq. 2). The network represents these conditional wave-functions as vector outputs that depend just on previous particles, which
are then normalized according to the l2-norm. This method is inspired by how autoregressive neural networks represent a
normalized probability via the chain rule, i.e., P (x1, . . . , xN ) =

Q
i P (xi|xi�1, . . . , x1). In practice, the network represents the

conditional wave-functions in log-space for numerical stability, i.e. the conditional wave-functions are represented as ln i, the
l2-normalization is realized by the operation vi � 0.5 ln

P
k |exp(vk)|

2, and the product is replaced by a sum. (a) Illustration of
a deep 1D-convolutional NAQS model following the PixelCNN [17] architecture. Each column of nodes represent a layer in the
network, starting with the input layer representing the N -particle configuration (s1, . . . , sN ). Each internal node in the graph
is a complex vector computed according to its layer type. Namely, masked convolutions are limited to having local connectivity,
where a node at the j’th row is only connected to nodes with connections to si where i < j. All inputs to a node at the l’th layer
are multiplied by a matrix W (l), shared across all rows in the same layer, and followed by applying a non-linear element-wise
function � : C ! C. (b) Depicts the exact sampling algorithm for NAQS, where empty nodes represent unused nodes, and filled
but faded nodes represent cached results from previous steps. The quantum number of each particle is generated sequentially,
by computing its respective conditional wave-function, and sampling according to the squared magnitude. Notice that only a
single row is processed at each step, and so sampling a complete configuration has the same runtime as a single forward pass.

The quality of the above approximation depends on the
batch size, B, but also on the degree of correlations be-
tween the individual samples. The advantages of our di-
rect sampling method supported by NAQS over MCMC
are twofold in this context: (i) Faster sampling: each
individual sample can be generated with fewer network
passes, and generating a batch of samples is embarrass-
ingly parallel, as opposed to the sequential nature of
MCMC; (ii) Faster convergence: because the generated
samples are exact and i.i.d., and so result in more accu-
rate estimates of the gradient at each step.

It is also worth remarking that NAQS allow to e↵ec-
tively move the scope and potentialities of variational
quantum states significantly closer to the state-of-the-art
in ML. This is mostly because the inherent complexity
of sampling from deep networks with MCMC has limited
early NQS applications to rather shallow neural-network
architectures. Below, we empirically demonstrate that
NAQS coupled with these advanced optimization proce-
dure can find ground states of very large systems in a
significantly shorter amount of time.

Experiments.– As a first benchmark for our approach,
we consider a case where MCMC sampling can be
strongly biased. A paradigmatic quantum system ex-
hibiting this issue is found in the ferromagnetic phase of
the transverse field Ising model. The Hamiltonian for

h NAQS Energy QMC Energy NAQS h|�z|i QMC h|�z|i
2 -2.4096022(2) -2.40960(3) 0.78326(2) 0.78277(38)
2.5 -2.7476550(5) -2.74760(3) 0.57572(3) 0.57566(63)
3 -3.1739005(5) -3.17388(4) 0.16179(4) 0.16207(54)
3.5 -3.6424799(3) -3.64243(4) 0.11094(3) 0.11011(30)
4 -4.1217979(2) -4.12178(4) 0.09725(2) 0.09728(24)

TABLE I. Shows estimating ground states observables using
NAQS is very accurate. for each h we optimize NAQS using
two stages. In the first noisy stage we use small batch of 100
samples, then after the NAQS became closer to the ground
state we increase the batch size to reduce the noise in the
gradient. Afterward the observables estimation done with
{x}1200000n=1 ⇠ | (x)|2

this model is given by:

H = �J
X

<i,j>

�i
z�

j
z � �

X

i

�i
x, (8)

where the summation runs over pairs of lattice edges.
Here we study the case of a 2D square lattice with open
boundary conditions, and for varying strenghts of the
transverse field. The system is in a ferromagnetic phase
when the transverse magnetic field � is weak with respect
to the coupling constant, and specifically in 2D when
� < �c ' 3.044J [21].

In order to verify the correctness of the model pro-
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FIG. 4. Comparing the e↵ects of the sampling method, ei-
ther MCMC or direct sampling, on the training procedure
for the transverse-field Ising model with � = 3J , close to the
critical value, on a large (21 ⇥ 21) lattice. We use the same
network architecture and optimization method in all experi-
ments, namely, we use ADAM [? ] for a maximum of 20K
iterations and a batch size of 100 samples per iteration. When
using MCMC, samples are taken every k 2 {10, 50, 100, 300}
steps in the chain, where increasing k decreases the correlation
between samples at the expense of increased computational
cost. The top panel shows the relative error to the minimal
energy found for this system in our experiments. The bot-
tom panel shows the energy variance. Since MCMC takes a
considerable time to complete just a single iteration, we have
restricted the training to maximum of 100 hours. Notice that
our direct sampling method performs as well or better than
the MCMC method with k = 300, but can perform many
more iterations at the same time. On the other hand, by us-
ing smaller k values MCMC can perform more iterations, but
the increased correlation causes the optimization to get stuck
at higher energy error and variance.

Discussion.– In this work, we have shown a scheme
to facilitate the practical employment of contemporary
deep learning architectures to the modeling of many-
body quantum systems. This constitutes a striking im-
provement over currently used RBM methods that are
limited to only hundreds of parameters, and very shallow

networks. A further practical advantage we gain is the
ability to make use of the substantial body of knowledge
regarding optimization of these architectures that is accu-
mulating in the deep learning literature. We empirically
demonstrate that by employing common deep learning
optimization methods such as stochastic gradient descent
(SGD), our direct sampling approach allows us to train
very large convolutional networks (depth 20, input size
21 ⇥ 21 , ⇠1 million parameters), and to represent many
body systems which MCMC-based techniques, following
the standard VMC philosophy would not be able to op-
timize in any reasonable amount of time. Our presented
experiments demonstrate that even for relatively simple
systems MCMC sampling can fail, and the i.i.d. sampling
enabled by our model succeeds. Relying on the theoreti-
cally promising results regarding convolutional networks’
capabilities in representing highly entangled systems [14],
we view the enabling of their optimization as an integral
step in reaching currently unattainable insight on a vast
variety of quantum many body phenomena.
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Appendix A: Proof of Claim 1

The proof follows an induction argument. For N = 1,
it holds that  (s1) ⌘  1(s1), and so  is normalized
because  1 is normalized with respect to s1. Assume the
claim holds for N = k, then for N = k +1 we first define
 ̃(s1, . . . , sk) ⌘

Qk
i=1 i(si|si�1, . . . , s1), and so

X

s1,...,sk+1

| (s1, . . . , sk+1)|2

=
X

s1,...,sk+1

k+1Y

i=1

| i(si|si�1, . . . , s1)|2

=
X

s1,...,sk

 
kY

i=1

| i(si|si�1, . . . , s1)|2
! ⇤=1z }| {X

sk+1

| i(sk+1|sk, . . . , s1)|2

=
X

s1,...,sk

 ̃(s1, . . . , sk)
⇤⇤
= 1,

where (⇤) is because  k+1 is a normalized conditional
wave function, and (⇤⇤) because of the induction assump-
tion. ⇤
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07.4 - Fast Quantum Natural Gradient: QN-SPSA
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3

accessing the QFI in every iteration and any algorithm
with this reliance can be significantly sped up with our
approach.

A. Quantum Natural Gradient

Assume a parameterized model p✓ : Rd ! H, mapping
d parameters to a Hilbert space H, and a loss function
f : H ! R, such that the loss for parameters ✓ 2 Rd

is given as f(p✓). Now, the goal is to find the optimal
parameters that minimize the loss, given a starting point
✓(0) 2 Rd.

Vanilla gradient descent chooses the update step pro-
portional to the gradient rf(p✓) at the current parame-
ter values. A rescaling of all parameters by a fixed factor
is, therefore, directly reflected in the magnitude of the
gradient descent step. If the learning rate is not properly
adjusted, multiplying the parameters by a large constant
leads to overshooting the desired values, while multiply-
ing by a small constant can strongly slow down the speed
of convergence.

An elegant solution to this rescaling problem is to
choose the update step such that the change in the model
p✓ instead of the parameters ✓ remains small. To illus-
trate the di↵erence to vanilla gradient descent, it helps
to rewrite the update rule from Eq. (1) as

✓(k+1) = argmin
✓2Rd

h✓�✓(k),rf(✓(k))i+ 1

2⌘
||✓�✓(k)||22. (8)

In this representation, we clearly see that vanilla gradi-
ent descent chooses the parameter update aligned with
the direction of the gradient and determines the size of
the update step by limiting the change compared to the
previous parameters values, ✓(k).

We now replace the Euclidean norm || · ||2 by || · ||g(✓) =
h·, g(✓)·i where g(✓) 2 Rd⇥d denotes the metric tensor
induced by the model p✓ [24, 28]. In doing so, instead of
specifying the limit in the update step by using changes
in the parameter space, we now consider changes in the
model space. The update rule changes to

✓(k+1) = argmin
✓2Rd

h✓�✓(k),rf(✓(k))i+ 1

2⌘
||✓�✓(k)||2

g(✓(k)),

(9)
which can be solved exactly by

✓(k+1) = ✓(k) � ⌘g�1(✓(k))rf(✓(k)). (10)

This is known as Natural Gradient Descent [28].
We now consider the case where p✓ is given by a pa-

rameterized quantum circuit. Let | ✓i describe a pa-
rameterized pure quantum state on n qubits for classical
parameters ✓ 2 Rd. Then, the metric tensor g(✓) 2 Rd⇥d

is given by the QFI with elements [24]

gij(✓) = Re

⇢⌧
@ ✓

@✓i

����
@ ✓

@✓j

�
�
⌧
@ ✓

@✓i

���� ✓

�⌧
 ✓

����
@ ✓

@✓j

��
.

(11)

The required expectation values can be computed by us-
ing a linear combination of unitaries or by parameter shift
techniques [29].
Computing g in general requires evaluating O(d2) ex-

pectation values. By using the 2-SPSA algorithm, we
can replace g(✓(k)) by a stochastic approximation ḡ(k),
requiring only the evaluation of four expectation values,
i.e., constant and independent of d.
To exploit 2-SPSA, we use a di↵erent representation

of the QFI than in Eq. (11), namely, the Hessian of the
Fubini-Study metric [24, 30]

gij(✓) = �1

2

@

@✓i

@

@✓j
|h ✓0 | ✓i|2

����
✓0=✓

, (12)

see Appendix B for more details. We generalize 2-SPSA
for the Hessian of a metric instead of a function by ap-
plying perturbations only to the second argument of the
metric and keeping the first argument fixed. Concretely,
Eqs. (4) and (5) change to

ĝ(k) = �1

2

�F

2✏2
�(k)

1 �(k)T
2 +�(k)

2 �(k)T
1

2
, (13)

where

�F = F (✓(k), ✓(k) + ✏�(k)
1 + ✏�(k)

2 )

� F (✓(k), ✓(k) + ✏�(k)
1 )

� F (✓(k), ✓(k) � ✏�(k)
1 + ✏�(k)

2 )

+ F (✓(k), ✓(k) � ✏�(k)
1 ),

(14)

and F ( ,�) = |h |�i|2. The smoothing of the point-
estimates ĝ(k) into ḡ(k) and the technique to ensure the
estimate is positive semi-definite remains the same as in
the previous section.
Evaluating the Fubini-Study metric requires calcula-

tion of the absolute value of the overlap of | ✓i with pa-
rameter values ✓ and slightly shifted parameters ✓ + ✏�.
The overlap of two quantum states can be estimated us-
ing the swap test [31], where both states are prepared
in separate qubit registers. If the states are given by
| ✓i = U(✓) |0i for a parameterized unitary U , and we
only need the absolute value of the overlap, we can pre-
pare U†(✓ + ✏�)U(✓) |0i and estimate the probability of
measuring |0i, which is equal to |h ✓| ✓+✏�i|2. If our
state has n qubits and the circuit corresponding to U
has depth m, the swap test requires a circuit width of
2n, but only leads to a depth of m + O(1) [32]. In con-
trast, the compute-uncompute method [13] uses circuits
of width n, but instead needs twice the depth, 2m. De-
pending on the unitary and the structure of the available
hardware, either method can be advantageous.

B. Quantum Boltzmann Machines

QBMs are energy-based machine learning models that
encode information in the parameters ! of a parame-
terized n-qubit Hamiltonian Ô! [23]. This Hamiltonian
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FIG. 1: Investigation of the loss for the Pauli two-design circuit with the observable Ô = Z1Z2. (a) The circuit for
five qubits, where in each layer the dashed box is repeated. At then end we add a final rotation layer, not shown
here. For each rotation gate RPi the rotation axis is chosen uniformly at random, i.e., Pi ⇠ U({X,Y, Z}). (b) The
loss for 11 qubits and three rotation layers for vanilla gradient descent, QNG and the respective SPSA variants. (c)
The same problem scaled to 25 qubits. The analytic optimizers are not shown since they are computationally too

costly to evaluate for 100 parameters.

that we add for numerical stability. With this regular-
ization constant, we can interpolate between the natural
gradient (� = 0) and vanilla gradient (� � 0), see Ap-
pendix C for more details.

In Fig. 1(c), we repeat the experiment for 25 qubits.
With 100 parameters, this example already manifests the
advantage of SPSA-based optimizers over analytic gra-
dients. While analytic QNG requires the execution of
approximately 1.5 million circuits, QN-SPSA needs only
2100 circuits and still produces very similar results. Due
to the large computational cost, the analytic gradients
are not presented in the 25 qubit case.

In Appendix D, we compare the convergence of the dif-
ferent optimization schemes with respect to the number
of function evaluations and discuss the e�ciency and true
costs of the di↵erent optimizers in more detail.

2. Region of convergence

The advantage of natural gradients is not just a
faster convergence, which–for problems with a simple loss
landscape–might also be achieved with vanilla gradient
descent or SPSA if the learning rate is carefully cali-
brated. But, since QNG (or VarQITE) approximates
imaginary time evolution, we have the guarantee that
QNG always converges to the ground state if the initial
state has a non-zero overlap with it and if a su�ciently
powerful ansatz and small stepsize are chosen [16]. Even
with an ansatz that cannot follow QITE exactly, QNG
and QN-SPSA have superior convergence properties to
vanilla gradient descent and SPSA.

To illustrate this, we use the same problem as in
Ref. [16] with the ansatz

| ✓i = ei✓0(|0i h0|⌦ I+ |1i h1|⌦RY(✓2))(RX(✓1)⌦ I) |00i ,

prepared by the circuit in Fig. 2(a) and try to minimize
the energy with respect to the Hamiltonian

Ô =

0

B@

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 0

1

CA .

A variational global phase is added to account for phase
di↵erences between the target state and the ansatz, which
does not impact the expectation value but can lead to
incorrect gradients [17]. We choose di↵erent initial points
in the same loss landscape and test if vanilla gradient,
natural gradient, and the SPSA variants converge to the
optimal solution.
In this example, we choose an equidistant grid of 15⇥15

points in [�⇡,⇡]2 for the initial values of ✓1 and ✓2. The
initial global phase is set to zero, i.e., ✓0 = 0. As in
Ref. [16] we use constant learning rates of ⌘ = 0.886 for
vanilla gradient descent and ⌘ = 0.225 for QNG and all
methods do 200 iterations. We consider an optimization
run as converged if the final absolute error is below 10�4.
For the SPSA methods, we execute 10 optimization runs
for each initial point and label the point converged if
at least one out of the 10 runs converged. The vanilla
methods are deterministic and only run once. Standard
SPSA and QN-SPSA use the same learning rates as the
corresponding analytic versions, i.e., 0.886 and 0.225, re-
spectively.
The results are shown in Fig. 2(b). The analytic vanilla

gradient descent and QNG reproduce the results from
Ref. [16]: QNG converges from all sampled points ex-
cept when one of the initial angles is exactly 0, where at
least one gradient component vanishes and the parame-
ter update cannot move towards one of the minima in the
corners of the plot. Vanilla gradient additionally fails to
converge in a diamond-shaped region around the saddle
point (0, 0). The regions of convergence for the SPSA
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FIG. 6: The weighted MAXCUT problem. (a) The QAOA ansatz for the problem instance. (b) The loss landscape
and the path of di↵erent optimization routines through the landscape. (c) The convergence of the investigated

methods with respect to the required number of function evaluations.
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NetKet: A Machine Learning Toolkit for Many-Body Quantum Systems
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We introduce NetKet, a comprehensive open source framework for the study of many-body quan-
tum systems using machine learning techniques. The framework is built around a general and flexible
implementation of neural-network quantum states, which are used as a variational ansatz for quan-
tum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics
and quantum technology, namely quantum state tomography, supervised learning from wavefunc-
tion data, and ground state searches for a wide range of customizable lattice models. Our aim is
to provide a common platform for open research and to stimulate the collaborative development of
computational methods at the interface of machine learning and many-body physics.

I. MOTIVATION AND SIGNIFICANCE

Recent years have seen a tremendous activity around
the development of physics-oriented numerical techniques
based on machine learning (ML) tools [1]. In the context
of many-body quantum physics, one of the main goals
of these approaches is to tackle complex quantum prob-
lems using compact representations of many-body states
based on artificial neural networks. These representa-
tions, dubbed neural-network quantum states (NQS) [2],
can be used for several applications. In the supervised
learning setting, they can be used, e.g., to learn existing
quantum states for which a non-NQS representation is
available [3]. In the unsupervised setting, they can be
used to reconstruct complex quantum states from exper-
imental measurements, a task known as quantum state
tomography [4]. Finally, in the context of purely varia-
tional applications, NQS can be used to find approximate
ground- and excited-state solutions of the Schrödinger
equation [2, 5–9], as well as to describe unitary [2, 10, 11]
and dissipative [12–15] many-body dynamics. Despite
the increasing methodological and theoretical interest in
NQS and their applications, a set of comprehensive, easy-
to-use tools for research applications is still lacking. This
is particularly pressing as the complexity of NQS-related

approaches and algorithms is expected to grow rapidly
given these first successes, steepening the learning curve.

The goal of NetKet is to provide a set of primitives
and flexible tools to ease the development of cutting-
edge ML applications for quantum many-body physics.
NetKet also wants to help bridge the gap between the lat-
est and technically demanding developments in the field
and those scholars and students who approach the sub-
ject for the first time. Pedagogical tutorials are provided
to this aim. Serving as a common platform for future re-
search, the NetKet project is meant to stimulate the open
and easy-to-certify development of new methods and to
provide a common set of tools to reproduce published
results.

A central philosophy of the NetKet framework is to
provide tools that are as simple as possible to use for
the end user. Given the huge popularity of the Python
programming language and of the many accompanying
tools gravitating around the Python ecosystem, we have
built NetKet as a full-fledged Python library. This sim-
plicity of use however does not come at the expense of
performance. With this e�ciency requirement in mind,
all critical routines and components of NetKet have been
written in C++11.
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