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Everyday human listening is a stunning computational feat...

Consider an example of typical auditory input:
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pressure waveform.
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Hearing loss
increases with

age

« Current hearing aids help in quiet, less so in noisy

environ

ments

 Limited by our understanding of how we hear



Our research group: Laboratory for Computational Audition

Psychology Neuroscience Engineering

« Goal: to build good predictive models of human hearing

 If successful, will transform our ability to make people
hear better



Peripheral auditory system is fairly well characterized.
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Standard peripheral auditory models:

S Sound signal
1. Cochlear filters /\

/ \ Cochlear subbands

2. Nonlinearity

“Cochleagram”




Cochlear Channel (Hz)
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What happens downstream?



Can we obtain better models by training systems
to perform tasks?



Can we obtain better models by training systems
to perform tasks?

Human-level performance on classification tasks is now routine
via artificial neural networks
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Repeated application of simple operations:
filtering (convolution), pooling, and normalization

Filters and model architecture can be optimized to classify input signal



Can we obtain better models by training systems
to perform tasks?

« Hardwire cochlea to be faithful to biology
» Learn all subsequent stages with a neural network
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Result: Candidate model of auditory system



Many widely discussed limitations:

Learning is unrealistic...
“Neural” networks are not very neural...
* Poorly suited to circuit-level models

Behavior typically limited to trained classification
tasks

But for now:

Deep learning enables optimization of
hierarchical models for real-world tasks.

-> optimized observer models in new domains.



Plan for Today

 Summary of recent successes of our
neural network models of hearing

* Discussion of current model shortcomings



Take-Home Messages, Part 1
After training on natural auditory tasks with natural sounds:

* Pretty good matches to human behavioral experiments
« Speech recognition in noise
« Sound localization
* Pitch perception

« Best current predictions of auditory cortical responses
Manipulation of training conditions shows that similarity is a
function of optimization for natural tasks/sounds, cochlea

* Provides insight into origins of human behavioral traits

Degrading simulated cochlear input to the neural network
reproduces characteristics of human hearing impairment



SPEECH RECOGNITION IN BACKGROUND NOISE

Excerpted speech

+
Background noise

(e.g., music, speech babble, auditory scenes)

¢...gross domestic product grew...”
2 sec.

What word occurred halfway through clip?
600-way classification task
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- Weights learned with standard backpropagation

lassif
word y

- Automated optimization of architectural hyperparameters

- Convolutional in time and frequency

- Sounds are relatively short (< 2s), so we neglect

directionality of time, memory etc.

Kell et al., Neuron, 2018




Behavioral comparison:
Speech recognition in background noise
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21 conditions: 600 AFC

clean

+
4 different background types at 5 SNR levels

Erica Shook



Behavioral comparison: CNN & humans on same task
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Behavioral comparison: CNN & humans on same task
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Behavioral comparison: CNN & humans on same task
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14) Model Proportion Correct
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Behavioral comparison: CNN & humans on same task
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14)
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Behavioral comparison: CNN & humans on same task
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Behavioral comparison:
Sound localization

Classical story: three main types of cues to a sound’s location
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Behavioral comparison:
Sound localization

Natural sound N0|se
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Behavioral comparison:
Sound localization

m Human Localization Recordings from mannequin ears Model Localization
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Generalizes to
real-world (our
lab space at MIT)

Andrew Francl




Trained network reproduces many properties of
spatial hearing

Azimuth Bandwidth Duplex Ear Spectral Precedence
vs. Error vs. Error Theory Alteration  Smoothing Effect
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Network’s judgments are dominated by sound
onsets (‘precedence effect’), like humans:
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Network’s judgments are dominated by sound
onsets (‘precedence effect’), like humans:
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Behavioral comparison:
Pitch perception

Speech / Music
H Cochlear model

VW
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Background noise

What was the fundamental frequency of the sound?

Network trained on speech, instruments in noise
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Major advance over previous models: human-like behavior

* In realistic conditions

« Comparable accuracy

« Similar psychophysics
- Similar use of cues

Allows investigation of conditions that
produce human-like behavior
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Effect of Human Model
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Model only resembles
humans if optimized for
natural sounds.

Ray Gonzalez



Similar result for sound localization: Model only resembles
humans if optimized for natural conditions.

Alterations to training environment
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Example: precedence effect disappears selectively under
anechoic training conditions
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Trained neural networks can reveal

performance characteristics of task-optimized
mechanisms.

Conceptually similar to ideal observer models,
but applicable to domains where deriving an
ideal observer is intractable.



Longstanding controversy over timing vs. “place” information
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Longstanding controversy over timing vs. “place” information

Test by varying time constant of hair cell potential in cochlear model, retraining
3000 Hz cutoff
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Longstanding controversy over timing vs. “place” information

Test by varying time constant of hair cell potential in cochlear model, retraining
3000 Hz cutoff 50 Hz cutoff
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Trained neural networks exhibit similar
performance characteristics to humans...

They also explain responses in the auditory
cortex better than previous models.



Using learned features as encoding model

Each voxel = weighted sum of time-averaged unit
responses in a given layer

regularized
linear regression

sound1
sound2

sound3

\m

CNN |
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Cross-validated regularized linear regression
to predict voxel’s response




Best current model: dual pathways

« Optimizing across architectures yields split between speech
and music.

« Speech and music share early stages of computation

| . Word
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fc to

Kell et al., Neuron, 2018



Using learned features as encoding model

Each voxel = weighted sum of time-averaged unit
responses in a given layer
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Cross-validated regularized linear regression
to predict voxel’s response

Baseline:
|dentical procedure with the spectrotemporal filter model



Variance explained

Median variance explained across all of auditory cortex:
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Middle layers of model best predict cortical voxel responses

Word branch
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Middle layers of model best predict cortical voxel responses

Variance explained
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Best-predicting network layer for each voxel
Layer: [ conv3orlower [ conv4 [ conv5 or higher

Kell et al., Neuron, 2018




Suggestive of hierarchical organization of human auditory cortex

Best-predicting network layer for each voxel
Layer: [ conv3orlower [ conv4 [ conv5 or higher

Pretty clear evidence of two stages (core/belt)
But not obvious tertiary structure.




Take-Home Messages, Part 1
After training on natural auditory tasks with natural sounds:

* Pretty good matches to human behavioral experiments
« Speech recognition in noise
« Sound localization
* Pitch perception

« Best current predictions of auditory cortical responses
Manipulation of training conditions shows that similarity is a
function of optimization for natural tasks/sounds, cochlea

* Provides insight into origins of human behavioral traits

Degrading simulated cochlear input to the neural network
reproduces characteristics of human hearing impairment



Plan for Today

 Summary of recent successes of our
neural network models of hearing

* Discussion of current model shortcomings



Take-Home Messages, Part 2

Metamers of neural networks provide a way to reveal model
Invariances

« Metamers of deep layers of standard neural network models
are not metameric for humans
* Not even recognizable to humans
* True for vision and auditory networks

* Model metamers can be made more human-recognizable
with some architectural modifications (reducing aliasing)

* And by making models more robust to adversarial
examples (for reasons we don't yet fully understand)

« But divergences remain



Can network invariances be revealed
with model metamers?

Metamers - physically distinct stimuli that are indistinguishable
to observer

(A) : (B)
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Can network invariances be revealed
with model metamers?

Metamers - physically distinct stimuli that are indistinguishable
to observer

Classic L Spectral sensitivity of L photopigment ’E”
example: M| = [ Spectral sensitivity of M photopigment| %
color vision S Spectral sensitivity of S photopigment .-
o
8.
Q
But also o
evident in 2
human texture Q
perception, 1

Crowding cf Julesz, Rosenholtz, Simoncelli



Can network invariances be revealed
with model metamers?

Metamers - physically distinct stimuli that are indistinguishable
to observer

Instantiation of invariant recognition within network should
produce model metamers

-could reveal learned transformations

-could provide another test of whether model captures
human perception



Network invariances can be revealed
with model metamers
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Network invariances can be revealed
with model metamers
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Network invariances can be revealed
with model metamers

Original Synthetic
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« All subsequent layers are also matched. . it o010

 Decision about stimulus is thus the same. e



Network invariances can be revealed
with model metamers

Measured Layer

Early (Conv 0) Late (Logits)
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* Network’s response within a layer is matched
« All subsequent layers are also matched.
* Decision about stimulus is thus the same.



Network invariances can be revealed
with model metamers

Measured Layer
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* Network’s response within a layer is matched
« All subsequent layers are also matched.
* Decision about stimulus is thus the same.



Network invariances can be revealed
with model metamers

Measured Layer

Early (Conv 0) Late (Logits)
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* Network’s response within a layer is matched
« All subsequent layers are also matched (but not earlier).
* Decision about stimulus is thus the same.



Word

Original Audio

Example metamers from each convolutional
stage

<——— Matching activations of this speech signal

cochleagram conv_0 conv_1 conv_2 conv_3 conv_4 fc_intermedlate logits_word
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« Metamers are fully recognizable
to network (by design), but
become progressively
unintelligible to humans Jenelle Feather
« Evaluate with recognition task
(more conservative than a test of
human metamerism)
Feather et al., NeurlPS, 2019 | !



Word

Example metamers from each convolutional
stage

Original Audio
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Qualitatively similar results for vision networks:

Orlginal Image

conv_1_2 conv_2_2 conv_3_4 conv_4_4 conv_5_4

8 !
> .

Conv2d_la_3x3 Conv2d_2b_3x3 Conv2d | 3b_1x1 Conv2d_4a_3x3

Mixed_| Sd

Inception -V3

Resnet-101-V2

cf Mahendran and Vedaldi, 2015



Qualitatively similar results for vision networks:

VGG-19 Metamers Inception-V3 Metamers Resnet-101-V2 Metamers

Proportion Correct (Humans)
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Model metamers are often unrecognizable to humans

Model Metamer Recognition

|————~|—0-\+————0—$\1______+_'

* |n contrast to similar behavior with

natural sounds, divergent "
behavior with unnatural signals e
0.4+

« Substantial inconsistency with

. . 5 —t— Human Performance
biological perceptual systems ”?

—+—  Network Performance

Proportion Correctly Recognized

1
.

l

logits

« Strong benchmark for evaluating
sensory models

natural -
pool_0 -
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conv_2 4
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conv_ 4

fc intermediate

inverted cochleagram -

conv 0O/conv
conv 1l/conv

Jenelle Feather

Feather et al., NeurlPS, 2019



Reasons for pessimism?

 Many functions are consistent with the training data

« Most guarantees of “reasonable” behavior only hold within
training distribution

« Perhaps divergent metamers are expected and unavoidable?



Reasons for optimism?

Effect of Architecture
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cf Zhang 2019; Azulay and Weiss, 2018

Henaff and Simoncelli, 2015
Feather et al., NeurlPS, 2019



Reasons for optimism?

Convolutional Layers Pooling Layers
max()
Aliased S v
Network RelU
Conv Stride 2 Max Pool Stride 2
Rec.juc.:ed I . : .
Aliasing RelU
Network Conv Stride 1 Lowpass Subsample Lowpass Subsample
(Hann Kernel) Stride 2 (Hann Kernel) Stride 2

cf Zhang 2019; Azulay and Weiss, 2018

Henaff and Simoncelli, 2015
Feather et al., NeurlPS, 2019



How to address model inadequacies?

Other major divergence between neural networks and human

perception: adversarial examples

® /® = Training data 3= Adversarial example

Standard Training Standard training

Learn to separate data Classification fails on L2
with simple decision bounded adversarial
boundary examples

Models can be fooled
by small
(imperceptible to
humans) adversarial
perturbations.



How to address model inadequacies?

Adversarial robustness: Adversarial examples generated during
training; model is trained to correctly classify them

———————————————————————————————————————————————————————————

_ Adversarial example

® /® = Training data 3= Adversarial example = . "
included in training

@ o '

Standard Training Standard training Adversarial Training
Learn to separate data Classification fails on L2 | earn a decision boundary
with simple decision bounded adversarial that correctly classifies

boundary examples perturbed images

Madry et al. 2017

___________________________________________________________



How to address model inadequacies?

Adversarial robustness: Adversarial examples generated during
training; model is trained to correctly classify them

convO ~ block_3 averagepool logits

Robust models
have metamers
that are more
recognizable to
humans:

Standard Training

3

L2 Training
&

Joint work with Guillaume Leclerc, Aleksander Madry



How to address model inadequacies?

Adversarial robustness: Adversarial examples generated during
training; model is trained to correctly classify them

Visual recognition (humans)

1.0
g 0.8 l
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average_pool -

Metamer Generation Layer



How to address model inadequacies?

Adversarial robustness: Adversarial examples generated during
training; model is trained to correctly classify them

Auditory recognition (humans)
Effect of Adversarial Training, ResNet-50

1.0
Robust models G038
have metamers S o
that are more =
recognizable to B0 -
. - —+—£ -norm Training, €= 1, Human
humans: & 0.2{ ——Standard Training, Human
-4- Standard Training, Network
0.0 - - '

Though issue is
far from
completely fixed.
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final

Metamer Generation Layer



Why does adversarial training produce more human-

recognizable metamers?

 Metamers are a bit like the converse of T | P
adversarial examples Fos
- Model judges them to be the same, but ~ &" i
they look/sound different to humans e

« But independent of a classifier

 Just as relevant for models trained
without supervision

Proportion Correct
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block_2 1
block_3 1
block_4 1

logits 1

[}
O

average_pool 1

Metamer Generation Layer
Effect of Adversarial Training, ResNet-50

--------------------------------------

—+£ -norm Training, =1, Human
——Standard Training, Human

-4- Standard Training, Network

« Not obvious why forcing invariance to human-
iImperceptible perturbations eliminates model
iInvariances that humans lack...
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natural
inverte
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Metamer Generation Layer



Metamers reveal differences not evident with our usual metrics

From Kell et al. 2018:

Recognition
of natural
sounds

_______________

Noisy Speech

i}m%%

________________

165 everyday
sounds:

person screaming
velcro

whistling

frying pan sizzling
alarm clock

cat purring

guitar riff

... etc. ...

What word is in the

middle of the clip?

1. about
2. above
3. according

586.young
587.zero

EI \Vi=FW

Background Sound

—8 Speaker Babble
—+Speech Shaped Noise
—+Music
—+Auditory Scene
—+None (Clean Speech)

v.: single voxel’s response
t0 all 165 natural sounds

T
0| —

_ Regularized
linear regression

F: features from




Metamers reveal differences not evident with our usual metrics

Behavioral Test fMRI predictions
Standard Training
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Take-Home Messages, Part 2

Metamers of neural networks provide a way to reveal model
Invariances

« Metamers of deep layers of standard neural network models
are not metameric for humans
* Not even recognizable to humans
* True for vision and auditory networks

* Model metamers can be made more human-recognizable
with some architectural modifications (reducing aliasing)

* And by making models more robust to adversarial
examples (for reasons we don't yet fully understand)

« But divergences remain



Summary

New models via deep learning of audio tasks

Compelling matches to human behavior with
real-world sounds and tasks

And for many classical psychophysical results
Insight into origins of behavioral traits

Better models of auditory cortex

Evidence for hierarchical organization

Significant remaining discrepancies revealed
with model metamers

Model Proportion Correct
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